- #1
karush
Gold Member
MHB
- 3,269
- 5
find an equation of the circle passing through the given points
85 Given $(-1,3),\quad (6,2),\quad (-2,-4)$
since the radius is the same for all points set all cirlce eq equal to each other
$(x_1-h)^2+(y_1-k)^2=(x_2-h)^2+(y_2-k)^2=(x_3-h)^2+(y_3-k)^2$
plug in values
$(-1-h)^2+(3-k)^2=(6-h)^2+(2-k)^2=(-2-h)^2+(-4-k)^2$
from this we get (via W|A)
$h = 2,\quad k = -1$
derive the radius by the distance of the center to one of the points
$d=\sqrt{(2-(-2))^2+(-1-(-4))^2}\sqrt{16+9}=\sqrt{25}=5$
thus the stardard circle equation would be
$\left(x-2\right)^2+\left(y+1\right)^2=25$
ok I think this is ok, but I was going to try to do this with a matrix but with the squares in it didn't see how
also want to try to draw the 3 points, center, and circle with tikx
first attempt... need 3 points and ticks and text
\begin{tikzpicture}
\draw (.4,-.2) circle (1cm);
\draw (-2,0) -- (3,0);
\draw (0,-2) -- (0,2);
\end{tikzpicture}
I assume there might be some kill all formula used for this problem.
85 Given $(-1,3),\quad (6,2),\quad (-2,-4)$
since the radius is the same for all points set all cirlce eq equal to each other
$(x_1-h)^2+(y_1-k)^2=(x_2-h)^2+(y_2-k)^2=(x_3-h)^2+(y_3-k)^2$
plug in values
$(-1-h)^2+(3-k)^2=(6-h)^2+(2-k)^2=(-2-h)^2+(-4-k)^2$
from this we get (via W|A)
$h = 2,\quad k = -1$
derive the radius by the distance of the center to one of the points
$d=\sqrt{(2-(-2))^2+(-1-(-4))^2}\sqrt{16+9}=\sqrt{25}=5$
thus the stardard circle equation would be
$\left(x-2\right)^2+\left(y+1\right)^2=25$
ok I think this is ok, but I was going to try to do this with a matrix but with the squares in it didn't see how
also want to try to draw the 3 points, center, and circle with tikx
first attempt... need 3 points and ticks and text
\begin{tikzpicture}
\draw (.4,-.2) circle (1cm);
\draw (-2,0) -- (3,0);
\draw (0,-2) -- (0,2);
\end{tikzpicture}
I assume there might be some kill all formula used for this problem.
Last edited: