- #1
shamieh
- 539
- 0
Find the explicit solution to the IVP.
$xdx + ye^{-x}dy=0$, $y(0) =1$
so I did some manipulation to get
$ye^{-x}dy= -xdx$ ==> $\frac{dy}{dx}=\frac{-x}{ye^{-x}}$
but now I'm confused on what to do. What I found above is the implicit solution right? So do I just need to get $y'$ on the left side by multiplying through with a $dx$ and then just plug a $0$ in for $x$ and a $1$ in for $y$ to get the explicit solution??
$xdx + ye^{-x}dy=0$, $y(0) =1$
so I did some manipulation to get
$ye^{-x}dy= -xdx$ ==> $\frac{dy}{dx}=\frac{-x}{ye^{-x}}$
but now I'm confused on what to do. What I found above is the implicit solution right? So do I just need to get $y'$ on the left side by multiplying through with a $dx$ and then just plug a $0$ in for $x$ and a $1$ in for $y$ to get the explicit solution??