Finding the Fourier cosine series for ##f(x)=x^2##

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached.
Relevant Equations
Fourier cosine series
I was just going through my old notes on this i.e

1699522218550.png
The concept is straight forward- only challenge phew :cool: is the integration bit...took me round and round a little bit... that is for ##A_n## part.

My working pretty ok i.e we shall realize the text solution. Kindly find my own working below.

1699522329913.png
Now to my question supposing we have to find say Fourier cosine series for ##f(x)= x^7##. The integration by parts here will take like forever to do. Do we have software for this? Will Wolfram help?
 
Last edited:
Physics news on Phys.org
chwala said:
Will Wolfram help?
Pretty easy to check for yourself :wink: . Let us know !

##\ ##
 
BvU said:
Pretty easy to check for yourself :wink: . Let us know !

##\ ##
Will do check @BvU ... however, if one was to do this by hand ... No technology...how long would it take to work to solution?
 
The ##f(x)= x^7## is odd. Perhaps Fourier sine series rather than cosine?
 
chwala said:
Now to my question supposing we have to find say Fourier cosine series for ##f(x)= x^7##. The integration by parts here will take like forever to do. Do we have software for this? Will Wolfram help?

Set I_n = \int_0^{2\pi} x^{2n+1} \sin kx\,dx, \qquad k = 1, 2, \dots. so that integrating by parts twice, <br /> I_n = - \frac{(2n+1)(2n)}{k^2}I_{n-1} - \frac{(2\pi)^{2n+1}}{k}. This recurrence relation can be solved subject to the initial condition I_0 = -\frac{2\pi}{k} to obtain <br /> I_N = \frac{(2N + 1)!(-1)^N}{k^{2N}} \frac{2\pi}{k}\sum_{n=0}^N \frac{(-1)^{n+1}(2\pi k)^{2n}}{(2n+1)!}.
 
  • Informative
  • Like
Likes chwala and DrClaude
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top