- #1
stunner5000pt
- 1,465
- 4
Find the Fourier Series in terms of [itex] \phi_{n} = \sin{nx} [/itex] of the step function
f(x) = 0 for [itex] 0 \leq x \leq \frac{1}{2} \pi [/itex]
= 1 for [itex] \frac{1}{2} \pi < x \leq \pi [/itex]
Solution
Fourier Series is [itex] \Sigma c_{n} \phi_{n} [/itex]
and for hte interval for x between 0 and 1/2 pi
[tex] c_{n} = \frac{\int_{0}^{\frac{1}{2}\pi} 0 dx}{\int_{0}^{\frac{1}{2}\pi} (\sin{nx})^2 dx [/tex]
because rho is assumed to be 1
the numerator is a constant and assumed to be 1
the denominator
[tex] \int_{0}^{\frac{1}{2}\pi} (\sin{nx})^2 dx = \int_{0}^{\frac{1}{2} \pi} (\frac{e^{ix}-e^{-ix}}{2i})^2 = \frac{-1}{4} [\frac{e^{2ixn}}{2in}- \frac{e^{-2inx}}{2in} -2x]_{0}^{\frac{1}{2} \pi} = \frac{\sin{n \pi} - \pi}{-4} = \frac{\pi}{4}[/tex]
P.s. Not done typing this yet but can you tell me if I am going in the right direction?
f(x) = 0 for [itex] 0 \leq x \leq \frac{1}{2} \pi [/itex]
= 1 for [itex] \frac{1}{2} \pi < x \leq \pi [/itex]
Solution
Fourier Series is [itex] \Sigma c_{n} \phi_{n} [/itex]
and for hte interval for x between 0 and 1/2 pi
[tex] c_{n} = \frac{\int_{0}^{\frac{1}{2}\pi} 0 dx}{\int_{0}^{\frac{1}{2}\pi} (\sin{nx})^2 dx [/tex]
because rho is assumed to be 1
the numerator is a constant and assumed to be 1
the denominator
[tex] \int_{0}^{\frac{1}{2}\pi} (\sin{nx})^2 dx = \int_{0}^{\frac{1}{2} \pi} (\frac{e^{ix}-e^{-ix}}{2i})^2 = \frac{-1}{4} [\frac{e^{2ixn}}{2in}- \frac{e^{-2inx}}{2in} -2x]_{0}^{\frac{1}{2} \pi} = \frac{\sin{n \pi} - \pi}{-4} = \frac{\pi}{4}[/tex]
P.s. Not done typing this yet but can you tell me if I am going in the right direction?
Last edited: