- #1
ephedyn
- 170
- 1
Homework Statement
Find the function [tex] F [/tex] in
[tex] J\left[y\right]={\displaystyle \int}_{a}^{b}F\left(x,y,y'\right)\ dx [/tex]
such that the resulting Euler's equation is
[tex] f-\left(-\dfrac{d}{dx}\left(a\left(x\right)u'\right)\right)=0 [/tex]
for [tex] x\in\left(a,b\right) [/tex] where [tex] a\left(x\right) [/tex] and [tex] f\left(x\right) [/tex] are given. Solve the equation in the special case [tex] a=0 [/tex] , [tex] b=1 [/tex] , [tex] a\left(x\right)\equiv 1, f\left(x\right)\equiv 1, u\left(a\right)=A, u\left(b\right)=B [/tex]
Homework Equations
From the Euler-Lagrange equation,
[tex] F_{y}-\dfrac{d}{dx}F_{y'}=0 [/tex]
The Attempt at a Solution
we observe that [tex] F_{y}=f [/tex] and [tex] F_{y'}=-a\left(x\right)u' [/tex] or [tex] F_{y}=-f [/tex] and [tex] F_{y'}=a\left(x\right)u' [/tex] .
[tex] \dfrac{\partial F}{\partial y'}=a\left(x\right)u'\left(x\right) [/tex]
[tex] \dfrac{\partial F}{\partial y}=-f\left(x\right)\implies F\left(x,y,y'\right)=-f\left(x\right)+c_{2}\qquad c_{2}\in\mathbb{R} [/tex]
Suppose [tex] f\left(x\right)\equiv1 [/tex] and [tex] a\left(x\right)\equiv1 [/tex],
[tex] -\dfrac{d}{dx}u'=1\implies u'=-x [/tex]
[tex] u\left(x\right)=-\dfrac{x^{2}}{2} [/tex]
[tex] u\left(a=0\right)=-\dfrac{a^{2}}{2}=0=A [/tex]
[tex] u\left(b=1\right)=-\dfrac{b^{2}}{2}=-\dfrac{1}{2}=B [/tex]
Hence, we have [tex] A=0 [/tex] and [tex] B=-\dfrac{1}{2}. [/tex]
2 questions at this point... Sorry if this sounds silly, but what now? Also, did I get those 2 lines with the partial derivatives correct? How should I go around finding [tex] F [/tex] after that?
Thanks in advance!