- #1
StephenPrivitera
- 363
- 0
What is the general solution to the equations f(g(x))=h(x) and g(f(x))=h(x), or how do you find the particular soltuion to the equations given a function f (given any f what is the general form of h(x) such that g(x) exists)?
My thoughts on the topic:
Specific example:
Suppose we have f(x)=x+1 and h(x)=x. Then g(x)=x-1.
Suppose instead h(x)=x+2. Then,
f(g(x))=g(x)+1=x+2
g(x)=x+1
g(f(x))=x+1+1=x+2 so it checks.
Now suppose h(x)=3x
f(g(x))=g(x)+1=3x
g(x)=3x-1
g(f(x))=3(x+1)-1=3x+2 doesn't check.
More general case:
Suppose now f(x)=x2
f(g(x))=[g(x)]2=h(x)
g(x)=sqrt(h(x))
g(f(x))=[squ]h(x2)=h(x)
So g(x) exists for a given h(x) if
h(x2)=[h(x)]2
I don't think I can solve this any further. I feel resigned to the fact that I must check to see that this holds for some specific h(x) rather than finding the general solution.
Certainly, h(x)=xk works. Any further thoughts?
Edit:
Oh by the way, h(x)=x of course works for all f provided that f has an inverse. So any general form should be able to reduce to h(x)=x.
My thoughts on the topic:
Specific example:
Suppose we have f(x)=x+1 and h(x)=x. Then g(x)=x-1.
Suppose instead h(x)=x+2. Then,
f(g(x))=g(x)+1=x+2
g(x)=x+1
g(f(x))=x+1+1=x+2 so it checks.
Now suppose h(x)=3x
f(g(x))=g(x)+1=3x
g(x)=3x-1
g(f(x))=3(x+1)-1=3x+2 doesn't check.
More general case:
Suppose now f(x)=x2
f(g(x))=[g(x)]2=h(x)
g(x)=sqrt(h(x))
g(f(x))=[squ]h(x2)=h(x)
So g(x) exists for a given h(x) if
h(x2)=[h(x)]2
I don't think I can solve this any further. I feel resigned to the fact that I must check to see that this holds for some specific h(x) rather than finding the general solution.
Certainly, h(x)=xk works. Any further thoughts?
Edit:
Oh by the way, h(x)=x of course works for all f provided that f has an inverse. So any general form should be able to reduce to h(x)=x.
Last edited: