- #1
James Brady
- 106
- 4
Homework Statement
Find the group velocity for a shallow water wave: ##\nu = \sqrt{\frac{2\pi\gamma}{\rho\lambda^3}}##
Homework Equations
Phase velocity: ##v_p = \nu\lambda##
group velocity: ##v_g = \frac{d\omega}{dk}##
##k=\frac{2\pi}{\lambda}##
##\omega = 2\pi \nu##
The Attempt at a Solution
Get frequency in terms of wave number:
##\nu(k)=\sqrt{\frac{\gamma k}{\rho\lambda^2}}##
##\omega(k) = 2\pi\sqrt{\frac{\gamma k}{\rho\lambda^2}}##
##\frac{d\omega}{dk}=2\pi(\frac{1}{2}(\frac{\gamma k}{\rho \lambda^2})^{-1/2} \frac{\gamma}{\rho \lambda^2})##
We can rewrite the function, getting rid of k. Also did some canceling and moved the pi:##v_g=(\frac{\gamma 2\pi}{\rho \lambda^3})^{-1/2} \frac{\gamma\pi}{\rho \lambda^2}## ##v_g = \frac{\frac{\gamma\pi}{\rho \lambda^2}}{(\frac{\gamma 2\pi}{\rho \lambda^3})^{1/2}}##
Note that given the definition for phase velocity, we can write it as:
##v_p = \sqrt{\frac{2\pi\gamma}{\rho\lambda}}##
##v_g = \frac{\frac{\gamma\pi}{\rho \lambda^2}}{v_p \lambda} = \frac{\frac{\gamma\pi}{\rho \lambda^3}}{v_p}##
So this is where I'm stuck... The correct answer from the book is ##\frac{3}{2}v_p##