- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $\mathbb{F}_{p^m}$ and $\mathbb{F}_{p^n}$ be subfields of $\overline{\mathbb{Z}}_p$ with $p^n$ and $p^m$ elements respectively.
To find the field $\mathbb{F}_{p^m} \cap \mathbb{F}_{p^n}$ I have done the following:
Let $\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} = \mathbb{F}_{p^d}$.
$\mathbb{F}_{p^a} \leq \mathbb{F}_{p^b} \Leftrightarrow a \mid b$
We have that $\mathbb{F}_{p^d} \leq \mathbb{F}_{p^n} \Rightarrow d \mid n$ and $\mathbb{F}_{p^d} \leq \mathbb{F}_{p^m} \Rightarrow d \mid m$
So, $d \mid \gcd(n,m)$. We have that $\gcd(n, m) \mid m \Rightarrow \mathbb{F}_{p^{\gcd(n,m)}} \leq \mathbb{F}_{p^m}$ and $\gcd(n, m) \mid n \Rightarrow \mathbb{F}_{p^{\gcd(n,m)}} \leq \mathbb{F}_{p^n}$Does it stand that if $A \leq B$ and $A \leq C$, then $A\leq (B\cap C)$ ?? (Wondering)
If it stands, then we have that $\mathbb{F}_{p^{\gcd(n, m)}} \leq \mathbb{F}_{p^d} \Rightarrow \gcd(n, m) \mid d$
So, $d \mid \gcd(n, m)$ and $\gcd(n, m) \mid d$.
That means that $d=\gcd(n, m)$.
Therefore, $\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} = \mathbb{F}_{p^{\gcd(n, m)}}$
Is this correct?? (Wondering) Or could I improve something ?? (Wondering)
Let $\mathbb{F}_{p^m}$ and $\mathbb{F}_{p^n}$ be subfields of $\overline{\mathbb{Z}}_p$ with $p^n$ and $p^m$ elements respectively.
To find the field $\mathbb{F}_{p^m} \cap \mathbb{F}_{p^n}$ I have done the following:
Let $\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} = \mathbb{F}_{p^d}$.
$\mathbb{F}_{p^a} \leq \mathbb{F}_{p^b} \Leftrightarrow a \mid b$
We have that $\mathbb{F}_{p^d} \leq \mathbb{F}_{p^n} \Rightarrow d \mid n$ and $\mathbb{F}_{p^d} \leq \mathbb{F}_{p^m} \Rightarrow d \mid m$
So, $d \mid \gcd(n,m)$. We have that $\gcd(n, m) \mid m \Rightarrow \mathbb{F}_{p^{\gcd(n,m)}} \leq \mathbb{F}_{p^m}$ and $\gcd(n, m) \mid n \Rightarrow \mathbb{F}_{p^{\gcd(n,m)}} \leq \mathbb{F}_{p^n}$Does it stand that if $A \leq B$ and $A \leq C$, then $A\leq (B\cap C)$ ?? (Wondering)
If it stands, then we have that $\mathbb{F}_{p^{\gcd(n, m)}} \leq \mathbb{F}_{p^d} \Rightarrow \gcd(n, m) \mid d$
So, $d \mid \gcd(n, m)$ and $\gcd(n, m) \mid d$.
That means that $d=\gcd(n, m)$.
Therefore, $\mathbb{F}_{p^n} \cap \mathbb{F}_{p^m} = \mathbb{F}_{p^{\gcd(n, m)}}$
Is this correct?? (Wondering) Or could I improve something ?? (Wondering)