- #1
- 7,363
- 11,335
Hi All,
I am trying to see if there is a "nice" ( relatively straightforward) way of finding the
solution/kernel of the map : ##f(A)=A^n -Id ## , where A is an ## k \times k ## matrix and ##n## is a positive
integer. Question: what is the kernel of this map? Cranking out matrix coefficients gets messy
and very slow as n grows. I can think of a solution using the Fundamental Theorem of Linear
Algebra relating Ortho spaces of rows, columns and row- and column- spaces. Is there some other
"reasonable" way of finding all solutions (clearly Id,-Id are solutions for n even and Id is a solution for n odd
)?
I am trying to see if there is a "nice" ( relatively straightforward) way of finding the
solution/kernel of the map : ##f(A)=A^n -Id ## , where A is an ## k \times k ## matrix and ##n## is a positive
integer. Question: what is the kernel of this map? Cranking out matrix coefficients gets messy
and very slow as n grows. I can think of a solution using the Fundamental Theorem of Linear
Algebra relating Ortho spaces of rows, columns and row- and column- spaces. Is there some other
"reasonable" way of finding all solutions (clearly Id,-Id are solutions for n even and Id is a solution for n odd
)?