- #1
Another
- 104
- 5
Homework Statement
##f(t) = -e^{-t}## ; ## t ≤ 0## and ##f(t) = 0## ;## t > 0 ## find Laplace transform this function.
Homework Equations
Laplace transform
##F(s) = \int_{[-∞<r<+∞]} f(t) e^{-st} dt##
The Attempt at a Solution
##F(s) = \int_{[-∞<r<0]} -e^{-t} e^{-st} dt +\int_{[0<r<+∞]} (0) e^{-st} dt ##
##F(s) = \int- e^{-(s+1)t} dt + 0## ,[-∞<r<0]
##F(s) = \frac{1}{s+1}[e^{-(s+1)t}]##
##e^{-(s+1)(0)}=1## when t = 0
##e^{-(s+1)t}= 0 ## when t = -∞ I'm not sure because t≤0 . when take -∞ to ##e^{-(s+1)t} = e^{-∞} = 0##
please check my solution