- #1
Saitama
- 4,243
- 93
Homework Statement
Let ##\displaystyle f(r)=\int_0^{\pi/2} x^r\sin x \,\, dx##. Now match the following List-I with List-II.
$$
\begin{array} {|c| c | l c|}
\hline
& \text{List-I} & & \text{List-II} & & \\
\hline
\text{(P)} & \lim_{r\rightarrow \infty} r\left(\frac{2}{\pi}\right)^{r+1}f(r) & 1\cdot & 0 & & \\
\\
\\
\\
\text{(Q)} & \lim_{r\rightarrow \infty} \frac{f(r)}{f(r+1)} & 2\cdot & 1 & &\\
\\
\\
\\
\text{(R)} & \lim_{r\rightarrow \infty} \left(\frac{f(r)}{r\int_0^{\pi/2} x^r\cos x \,\, dx}\right) & 3\cdot & \frac{2}{\pi} & & \\
\\
\\
\\
\text{(S)} & \lim_{r\rightarrow \infty} \int_0^1 x^r\sin x \,\, dx & 4\cdot & \frac{\pi}{2} & &\\
\hline
\end{array}
$$
Homework Equations
The Attempt at a Solution
I haven't been able to make any useful attempt on this problem. I tried integrating by parts and reached the following:
$$f(r)=r\left(\frac{\pi}{2}\right)^{r-1}-r(r-1)f(r-2)$$
I am not sure if above is of any help.
Any help is appreciated. Thanks!
Last edited: