- #1
Archimedess
- 23
- 0
Hi everyone, I'm struggling with this problem:
Let ##f(x,y) =
\begin{cases}
(x-y)\ln(y-x) & \text{if } y>x \\
0 & \text{if } y\leq x
\end{cases}## and let ##C=\{(x,y)\in \mathbb{R}^2|x^2+y^2=1\}##
Then proof that ##max_Cf=1/e## and ##min_Cf=-(\ln2)/\sqrt2##
My solution:
I used Lagrange multiplier, so I have ##(x-y)\ln(y-x)-\lambda(x^2+y^2-1)=0##, then i have:
##
\begin{cases}
\ln(y-x)+1-2\lambda x=0\\
-\ln(y-x)-1-2\lambda y=0 \\
x^2+y^2-1=0
\end{cases}##
By solving the system (I also checked it with compiler) I only get the local minima which is ##-(ln2)/\sqrt2##, but by solving the system of equation I don't find the local maxima, I don't understand why. Any suggestions?
Let ##f(x,y) =
\begin{cases}
(x-y)\ln(y-x) & \text{if } y>x \\
0 & \text{if } y\leq x
\end{cases}## and let ##C=\{(x,y)\in \mathbb{R}^2|x^2+y^2=1\}##
Then proof that ##max_Cf=1/e## and ##min_Cf=-(\ln2)/\sqrt2##
My solution:
I used Lagrange multiplier, so I have ##(x-y)\ln(y-x)-\lambda(x^2+y^2-1)=0##, then i have:
##
\begin{cases}
\ln(y-x)+1-2\lambda x=0\\
-\ln(y-x)-1-2\lambda y=0 \\
x^2+y^2-1=0
\end{cases}##
By solving the system (I also checked it with compiler) I only get the local minima which is ##-(ln2)/\sqrt2##, but by solving the system of equation I don't find the local maxima, I don't understand why. Any suggestions?
Last edited: