- #1
ghostfolk
- 59
- 1
Homework Statement
An infinite cylindrical wire of radius ##R## carries a current per unit area ##\vec{J}## which varies with the distance from the axis as ##J(s)=ks^2\hat{z}## for ##0<s<R## and zero otherwise where k is a constant.
Find the magnetic field ##\vec{B(s)}## in all space.
Homework Equations
##\oint B \cdot dl=\mu_0I_{enc}##
##\nabla \times B=\mu_0 \vec{J}##
The Attempt at a Solution
[/B]
##\oint B \cdot dl=B2\pi s##, ##I_{enc}=
\Bigg\{
\begin{array}{lr}
\frac{\pi ks^4\hat{z}}{2}, 0<s<R\\
\frac{\pi k R^4\hat{z}}{2},s \ge R
\end{array}##
So,
##\vec{B}=
\Bigg\{
\begin{array}{lr}
\frac{ks^3\hat{z}]\mu_0}{4}, 0<s<R\\
\frac{kR^4\hat{z}\mu_0}{4s}, s \ge R
\end{array}##.
However, when I calculate the curl of ##\vec{B}##, I don't get back ##\vec{J}##. Where am I wrong?