MHB Finding the Measure of Angle KPM Using Angle Bisector Theorem

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Angle Measure
AI Thread Summary
Ray PK bisects angle LPM, with angle LPM measuring 11x degrees and angle LPK measuring (4x + 18) degrees. By the Angle Bisector Theorem, angle LPK equals angle KPM, which is half of angle LPM. Setting up the equation 4x + 18 = (11x)/2 leads to solving for x, resulting in x = 12. Consequently, the measure of angle KPM is calculated to be 66 degrees.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Ray $\overline{PK}$ bisects and the measure of $\angle{LPM}$ is $11x^o$ and the measure of $\angle{LPK}$ is $(4x+18)^o$
What is the measure of
$\angle{KPM}$
$s.\ 12^o \quad b.\ 28\dfrac{2}{7}^o \quad c. \ 42^o \quad d. \ 61\dfrac{1}{5}^o \quad e. \ 66^o$

43.png
 
Last edited:
Mathematics news on Phys.org
$\vec{PK}$ bisects $\angle LPM \implies m\angle LPK = m\angle KPM = \dfrac{1}{2} m\angle LPM$

$4x+18 = \dfrac{11x}{2}$
 
skeeter said:
$\vec{PK}$ bisects $\angle LPM \implies m\angle LPK = m\angle KPM = \dfrac{1}{2} m\angle LPM$

$4x+18 = \dfrac{11x}{2}$

so then
$\angle{LPK} = \angle{KPM} =4x + 18\quad\angle{LPM}=11x$
$\angle{LPK}+ \angle{KPM}= \angle{LPM}$
$4x+18+4x+18=11x$
$8x+36=11x\implies x=12$
$\angle{KPM}=4x+18\quad \therefore \angle{KPM} =4(12)+18=66$
e $66^o$

probably easier than this
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
5
Views
1K
Replies
1
Views
2K
Replies
46
Views
8K
Replies
7
Views
6K
Replies
23
Views
6K
Back
Top