- #1
mnb96
- 715
- 5
Hello,
if we consider the stereographic projection [itex]\mathcal{S}^2\rightarrow \mathbb{R}^2[/itex] given in the form:
[tex](X,Y) = \left( \frac{x}{1-z} , \frac{y}{1-z} \right)[/tex]
how can I find the metric in X,Y coordinates?
-- Should I first express the projection in spherical coordinates, then find the inverse projection [itex]\mathbb{R}^2\rightarrow \mathcal{S}^2[/itex]?
if we consider the stereographic projection [itex]\mathcal{S}^2\rightarrow \mathbb{R}^2[/itex] given in the form:
[tex](X,Y) = \left( \frac{x}{1-z} , \frac{y}{1-z} \right)[/tex]
how can I find the metric in X,Y coordinates?
-- Should I first express the projection in spherical coordinates, then find the inverse projection [itex]\mathbb{R}^2\rightarrow \mathcal{S}^2[/itex]?