- #1
dRic2
Gold Member
- 890
- 225
- Homework Statement
- I have to minimize the integral
$$\int_{\tau_1}^{\tau_2} y \sqrt{{x'}^2+{y'}^2} d \tau$$
with the isoperimetrical condition
$$\int_{\tau_1}^{\tau_2} \sqrt{{x'}^2+{y'}^2} = c$$
where ##c## is a constant.
- Relevant Equations
- Euler-Lagrange equations.
Using Lagrange multiplier ##\lambda## (only one is needed) the integral to minimize becomes
$$\int_{\tau_1}^{\tau_2} (y + \lambda) \sqrt{{x'}^2+{y'}^2} d \tau = \int_{\tau_1}^{\tau_2} F(x, x', y, y', \lambda, \tau) d\tau $$
Using E-L equations:
$$\frac {\partial F}{\partial x} - \frac d {d \tau} \frac {\partial F}{\partial x'} = 0 - \frac d {d \tau} \left( (y+\lambda) \frac {x'}{\sqrt{{x'}^2+{y'}^2}} \right) = 0$$
$$\frac {\partial F}{\partial y} - \frac d {d \tau} \frac {\partial F}{\partial y'} = \sqrt{{x'}^2+{y'}^2} - \frac d {d \tau} \left( (y+\lambda) \frac {y'}{\sqrt{{x'}^2+{y'}^2}} \right) = 0$$
$$\frac {\partial F}{\partial \lambda} - \frac d {d \tau} \frac {\partial F}{\partial \lambda'} = \sqrt{{x'}^2+{y'}^2} - 0 = 0$$
If I sum the equation for ##y## and ##\lambda## I get:
$$\frac d {d \tau} \left( (y+\lambda) \frac {y'}{\sqrt{{x'}^2+{y'}^2}} \right) = 0$$
Integrating the first equation I get:
$$(y+\lambda) \frac {x'}{\sqrt{{x'}^2+{y'}^2}} = \text{const.} \rightarrow y+\lambda = \frac {\sqrt{{x'}^2+{y'}^2}} {x'}$$
Putting together these last two equations I get:
$$\frac d {d \tau} \left( \frac {y'}{x'} \right) = \frac d {d \tau} \left( \frac {dy}{dx} \right) = 0$$
which is wrong!
I think I'm missing something fundamental because it is a pretty straightforward exercise.
$$\int_{\tau_1}^{\tau_2} (y + \lambda) \sqrt{{x'}^2+{y'}^2} d \tau = \int_{\tau_1}^{\tau_2} F(x, x', y, y', \lambda, \tau) d\tau $$
Using E-L equations:
$$\frac {\partial F}{\partial x} - \frac d {d \tau} \frac {\partial F}{\partial x'} = 0 - \frac d {d \tau} \left( (y+\lambda) \frac {x'}{\sqrt{{x'}^2+{y'}^2}} \right) = 0$$
$$\frac {\partial F}{\partial y} - \frac d {d \tau} \frac {\partial F}{\partial y'} = \sqrt{{x'}^2+{y'}^2} - \frac d {d \tau} \left( (y+\lambda) \frac {y'}{\sqrt{{x'}^2+{y'}^2}} \right) = 0$$
$$\frac {\partial F}{\partial \lambda} - \frac d {d \tau} \frac {\partial F}{\partial \lambda'} = \sqrt{{x'}^2+{y'}^2} - 0 = 0$$
If I sum the equation for ##y## and ##\lambda## I get:
$$\frac d {d \tau} \left( (y+\lambda) \frac {y'}{\sqrt{{x'}^2+{y'}^2}} \right) = 0$$
Integrating the first equation I get:
$$(y+\lambda) \frac {x'}{\sqrt{{x'}^2+{y'}^2}} = \text{const.} \rightarrow y+\lambda = \frac {\sqrt{{x'}^2+{y'}^2}} {x'}$$
Putting together these last two equations I get:
$$\frac d {d \tau} \left( \frac {y'}{x'} \right) = \frac d {d \tau} \left( \frac {dy}{dx} \right) = 0$$
which is wrong!
I think I'm missing something fundamental because it is a pretty straightforward exercise.
Last edited: