- #1
Artusartos
- 247
- 0
So if the parameter [tex]\theta[/tex] is alpha...
[tex]L(\theta) = \frac{1}{\Gamma(\theta)\beta^{\theta}} x^{\theta-1} e^{-x/\beta}[/tex]
Now I take the natural log of that...
[tex]ln(L(\theta)) = ln(\frac{1}{(1-\theta)!}) + ln(\frac{1}{\beta^{\theta}}) + ln(x^{\theta-1}) + ln(e^{-x/\beta})[/tex]
Now I want to take the derivative of this...but I'm stuck because I don't know what the derivative of [tex]\frac{1}{(1-\theta)!}[/tex] is...how can I find the derivative of a factorial?
[tex]L(\theta) = \frac{1}{\Gamma(\theta)\beta^{\theta}} x^{\theta-1} e^{-x/\beta}[/tex]
Now I take the natural log of that...
[tex]ln(L(\theta)) = ln(\frac{1}{(1-\theta)!}) + ln(\frac{1}{\beta^{\theta}}) + ln(x^{\theta-1}) + ln(e^{-x/\beta})[/tex]
Now I want to take the derivative of this...but I'm stuck because I don't know what the derivative of [tex]\frac{1}{(1-\theta)!}[/tex] is...how can I find the derivative of a factorial?