- #1
dumbdumNotSmart
- 41
- 3
Mentor note: moved from mathematics forums, therefore no homework template
Hello mates. I have a System of Differential Equations on my hands.
$$ W' = \left(\begin{matrix} 4 & 2 \\ 2 & 4 \end{matrix} \right) W + \begin{pmatrix} 6 \\6 \end{pmatrix}$$
where transposed W is (x y z). I have found the homogenous solution to said system. Finding the Particular solution is what I am not sure about. So far I have tried acquiring the particular using the homogenous solution, which I found to be:
$$ W_H = c_1 e^{6t} \left(\begin{matrix} 1 \\ 1 \end{matrix} \right) + c_2e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
Particular solution I am looking for is :
$$ W_P=\begin{pmatrix} e^{6t} & e^{2t} \\ e^{6t} & -e^{2t} \end{pmatrix} \begin{pmatrix} u_1 \\u_2 \end{pmatrix} $$
And we can find it with the following equation (u' would be the derivative of u):
$$ \begin{pmatrix} 6\\6 \end{pmatrix} =\begin{pmatrix} e^{6t} & e^{2t} \\ e^{6t} & -e^{2t} \end{pmatrix} \begin{pmatrix} u_1' \\u_2' \end{pmatrix} $$
This gives us the following equations:
$$ u_1' e^{6t} + u_2' e^{2t} =6 \\ u_1'e^{6t}-u_2'e^{2t}=6 \\ \Rightarrow u_1=-e^{-6t} \land u_2=0 $$
So my question is, when we integrate u2', would we consider the constant of integration... or not because we are finding the particular? Is my process correct? Thank you peeps
Hello mates. I have a System of Differential Equations on my hands.
$$ W' = \left(\begin{matrix} 4 & 2 \\ 2 & 4 \end{matrix} \right) W + \begin{pmatrix} 6 \\6 \end{pmatrix}$$
where transposed W is (x y z). I have found the homogenous solution to said system. Finding the Particular solution is what I am not sure about. So far I have tried acquiring the particular using the homogenous solution, which I found to be:
$$ W_H = c_1 e^{6t} \left(\begin{matrix} 1 \\ 1 \end{matrix} \right) + c_2e^{2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
Particular solution I am looking for is :
$$ W_P=\begin{pmatrix} e^{6t} & e^{2t} \\ e^{6t} & -e^{2t} \end{pmatrix} \begin{pmatrix} u_1 \\u_2 \end{pmatrix} $$
And we can find it with the following equation (u' would be the derivative of u):
$$ \begin{pmatrix} 6\\6 \end{pmatrix} =\begin{pmatrix} e^{6t} & e^{2t} \\ e^{6t} & -e^{2t} \end{pmatrix} \begin{pmatrix} u_1' \\u_2' \end{pmatrix} $$
This gives us the following equations:
$$ u_1' e^{6t} + u_2' e^{2t} =6 \\ u_1'e^{6t}-u_2'e^{2t}=6 \\ \Rightarrow u_1=-e^{-6t} \land u_2=0 $$
So my question is, when we integrate u2', would we consider the constant of integration... or not because we are finding the particular? Is my process correct? Thank you peeps
Last edited by a moderator: