- #1
lfdahl
Gold Member
MHB
- 749
- 0
Let $r_1,r_2, …,r_7$ be the distinct roots (one real and six complex) of the equation $x^7-7= 0$.
Let \[p = (r_1+r_2)(r_1+r_3)…(r_1+r_7)(r_2+r_3)(r_2+r_4)…(r_2+r_7)…(r_6+r_7) = \prod_{1\leq i<j\leq 7}(r_i+r_j).\]
Evaluate $p^2$.
Let \[p = (r_1+r_2)(r_1+r_3)…(r_1+r_7)(r_2+r_3)(r_2+r_4)…(r_2+r_7)…(r_6+r_7) = \prod_{1\leq i<j\leq 7}(r_i+r_j).\]
Evaluate $p^2$.
Last edited: