- #1
coderot
- 10
- 0
1) Find the range of values of k such that the function [tex]f(x) \equiv k(x+2)^2-(x-1)(x-2)[/tex] never exceeds 12.5. I've missed several stages of the computation because it is quite lengthy. I hope you get the flow of things.
My attempt...
[tex](k-1)\left[ x + \left( \frac{4k+3}{k-1} \right)x + \frac{4k-2}{k-1} \right] \le 12.5[/tex]Complete the square on LHS...
[tex](k-1)\left[ \left( x + \frac{4k+3}{2(k-1)} \right)^2 - \frac{48k+1}{4(k-1)^2} \right] \le 12.5[/tex]This boils down to...[tex]-196k \le -98[/tex] and so [tex]k \ge 0.5[/tex]Solution given is: [tex]k \le 0.5[/tex] not sure why. Any help thanks.
My attempt...
[tex](k-1)\left[ x + \left( \frac{4k+3}{k-1} \right)x + \frac{4k-2}{k-1} \right] \le 12.5[/tex]Complete the square on LHS...
[tex](k-1)\left[ \left( x + \frac{4k+3}{2(k-1)} \right)^2 - \frac{48k+1}{4(k-1)^2} \right] \le 12.5[/tex]This boils down to...[tex]-196k \le -98[/tex] and so [tex]k \ge 0.5[/tex]Solution given is: [tex]k \le 0.5[/tex] not sure why. Any help thanks.