- #1
saadhusayn
- 22
- 1
I'm trying to use Cartan's method to find the Schwarzschild metric components from Hughston and Tod's book 'An Introduction to General Relativity' (pages 89-90). I'm having problems calculating the components of the Ricci tensor.
The given distance element is
$$ ds^2 = e^{2 \lambda} dt^2 - e^{2 \mu} dr^2 - r^2({d \theta^2}+ \sin^2 \theta
d\phi^2) $$
Thus ##g_{\mu \nu} = \text{diag}(e^{2 \lambda}, -e^{2\mu}, -r^2, -r^2 \sin^2\theta)## and
##g^{\mu \nu} = \text{diag}(e^{-2\lambda}, -e^{-2\mu}, -\frac{1}{r^2}, -\frac{1}{r^2 \sin^2 \theta})##
Using Cartan's structure equations, I have worked out the Ricci tensor components ##R_{011}^{\space\space\space\space\space\space 0}##, ##R_{022}^{\space\space\space\space\space\space 0}##, ##R_{033}^{\space\space\space\space\space 0}##, ##R_{122}^{\space\space\space\space\space\space 1}##,##R_{133}^{\space\space\space\space\space\space 1}##and ##R_{233}^{\space\space\space\space\space\space2}##. Then
$$ R_{00} = R_{0\rho0}^{\space\space\space\space\space\space \rho} =
R_{000}^{\space\space\space\space\space\space 0}+
R_{010}^{\space\space\space\space\space\space 1} + R_{020}^{\space\space\space\space\space\space 2} + R_{030}^{\space\space\space\space\space\space 3} $$
Now ##R_{000}^{\space\space\space \space \space 0} = 0## by antisymmetry of the first two indices.
The last 3 terms look like the known components ##R_{011}^{\space\space\space\space\space\space 0}##, ##R_{022}^{\space\space\space\space\space\space 0}##, ##R_{033}^{\space\space\space\space\space 0}## except with adjacent upstairs and downstairs indices switched. Is the following how we obtain them?
##R_{abc}^{\space\space\space \space \space d } = g^{de} R_{abce} = -g^{de} R_{abec} = -g_{cf}g^{de} R_{abe}^{\space\space\space \space \space f}##. Now ##\because## the metric is a diagonal one, the only surviving term is the one for which ##f = c## and ##d = e##. Therefore,
##R_{abc}^{\space\space\space \space \space d} = - g_{cc}g^{dd}R_{abd}^{\space\space\space \space \space c} ## (no summation)
So, for example,
$$R_{010}^{\space \space \space \space \space 1} = -g_{00}g^{11} R_{011}^{\space \space \space \space \space 0} = -(e^{2\lambda}) (-e^{-2\mu}) R_{011}^{\space \space \space \space \space 0}$$
...and so on and so forth for the other Riemann tensor components.
If it isn't, how would we get these components from the known components of the Riemann tensor? Thank you!
The given distance element is
$$ ds^2 = e^{2 \lambda} dt^2 - e^{2 \mu} dr^2 - r^2({d \theta^2}+ \sin^2 \theta
d\phi^2) $$
Thus ##g_{\mu \nu} = \text{diag}(e^{2 \lambda}, -e^{2\mu}, -r^2, -r^2 \sin^2\theta)## and
##g^{\mu \nu} = \text{diag}(e^{-2\lambda}, -e^{-2\mu}, -\frac{1}{r^2}, -\frac{1}{r^2 \sin^2 \theta})##
Using Cartan's structure equations, I have worked out the Ricci tensor components ##R_{011}^{\space\space\space\space\space\space 0}##, ##R_{022}^{\space\space\space\space\space\space 0}##, ##R_{033}^{\space\space\space\space\space 0}##, ##R_{122}^{\space\space\space\space\space\space 1}##,##R_{133}^{\space\space\space\space\space\space 1}##and ##R_{233}^{\space\space\space\space\space\space2}##. Then
$$ R_{00} = R_{0\rho0}^{\space\space\space\space\space\space \rho} =
R_{000}^{\space\space\space\space\space\space 0}+
R_{010}^{\space\space\space\space\space\space 1} + R_{020}^{\space\space\space\space\space\space 2} + R_{030}^{\space\space\space\space\space\space 3} $$
Now ##R_{000}^{\space\space\space \space \space 0} = 0## by antisymmetry of the first two indices.
The last 3 terms look like the known components ##R_{011}^{\space\space\space\space\space\space 0}##, ##R_{022}^{\space\space\space\space\space\space 0}##, ##R_{033}^{\space\space\space\space\space 0}## except with adjacent upstairs and downstairs indices switched. Is the following how we obtain them?
##R_{abc}^{\space\space\space \space \space d } = g^{de} R_{abce} = -g^{de} R_{abec} = -g_{cf}g^{de} R_{abe}^{\space\space\space \space \space f}##. Now ##\because## the metric is a diagonal one, the only surviving term is the one for which ##f = c## and ##d = e##. Therefore,
##R_{abc}^{\space\space\space \space \space d} = - g_{cc}g^{dd}R_{abd}^{\space\space\space \space \space c} ## (no summation)
So, for example,
$$R_{010}^{\space \space \space \space \space 1} = -g_{00}g^{11} R_{011}^{\space \space \space \space \space 0} = -(e^{2\lambda}) (-e^{-2\mu}) R_{011}^{\space \space \space \space \space 0}$$
...and so on and so forth for the other Riemann tensor components.
If it isn't, how would we get these components from the known components of the Riemann tensor? Thank you!
Last edited: