- #1
jamesbrazil
- 1
- 0
- TL;DR Summary
- Command to solve a strange equation in Maple for ##x \ll 1##
I need help solving an equation. I started using Maple, but had no success. Could someone explain to me which command to use? I need to find a very small value of ##x##, that is, ##x \ll 1##. The equation is
$$434972871000000000.0+{\frac {\sqrt {6} \left( { 1.488388992\times 10^
{-36}}\,\ln \left( 1/12\,{\frac {12\,\sqrt {6}{x}^{2}+{
1.488388992\times 10^{-36}}\,\sqrt {6}+12\,\sqrt {6\,{x}^{2}+{
1.488388992\times 10^{-36}}}x}{x}} \right) \sqrt {6}-12\,
\sqrt {6\,{x}^{2}+{ 1.488388992\times 10^{-36}}}x \right) }{
72\,{x}^{3}}}-{\frac { \left( 0.001704000000\,{x}^{2}+{
1.488388992\times 10^{-36}} \right) \left( { 1.488388992\times 10^{
-36}}\,\ln \left( 1/12\,{\frac { 0.003408000000\,\sqrt {6}{x}^{2
}+{ 1.488388992\times 10^{-36}}\,\sqrt {6}+12\,\sqrt {
0.0000004839360000\,{x}^{2}+{ 4.227024737\times 10^{-40}}}x
}{x}} \right) \sqrt {6}-12\,\sqrt { 0.0000004839360000\,{x}^
{2}+{ 4.227024737\times 10^{-40}}}x \right) \sqrt {6}}{72\,\sqrt
{ 6.000000001\,{x}^{2}+{ 5.240806311\times 10^{-33}}}\sqrt {
0.0000004839360000\,{x}^{2}+{ 4.227024737\times 10^{-40}}}{
x}^{3}}}=0$$
$$434972871000000000.0+{\frac {\sqrt {6} \left( { 1.488388992\times 10^
{-36}}\,\ln \left( 1/12\,{\frac {12\,\sqrt {6}{x}^{2}+{
1.488388992\times 10^{-36}}\,\sqrt {6}+12\,\sqrt {6\,{x}^{2}+{
1.488388992\times 10^{-36}}}x}{x}} \right) \sqrt {6}-12\,
\sqrt {6\,{x}^{2}+{ 1.488388992\times 10^{-36}}}x \right) }{
72\,{x}^{3}}}-{\frac { \left( 0.001704000000\,{x}^{2}+{
1.488388992\times 10^{-36}} \right) \left( { 1.488388992\times 10^{
-36}}\,\ln \left( 1/12\,{\frac { 0.003408000000\,\sqrt {6}{x}^{2
}+{ 1.488388992\times 10^{-36}}\,\sqrt {6}+12\,\sqrt {
0.0000004839360000\,{x}^{2}+{ 4.227024737\times 10^{-40}}}x
}{x}} \right) \sqrt {6}-12\,\sqrt { 0.0000004839360000\,{x}^
{2}+{ 4.227024737\times 10^{-40}}}x \right) \sqrt {6}}{72\,\sqrt
{ 6.000000001\,{x}^{2}+{ 5.240806311\times 10^{-33}}}\sqrt {
0.0000004839360000\,{x}^{2}+{ 4.227024737\times 10^{-40}}}{
x}^{3}}}=0$$
Last edited by a moderator: