- #1
Cottontails
- 33
- 0
Homework Statement
Find all solutions to z^2 + 4conjugate[z] + 4 = 0 where z is a complex number.
Homework Equations
Alternate form: 4conjugate[z] + z^2 = -4
The Attempt at a Solution
I have tried solving this solution using the quadratic formula.
However, √b^2 - 4ac = √16 - 4x1x4 = 0. Therefore, as the square root is not negative, there are no imaginary numbers and the solution cannot be complex, right? Although, I am also confused with solving this, given that there is a conjugate in the equation. So, would I have to solve the equation twice, one as z^2+4z+4=0 and the other as z^2-4z+4=0?
I also put the equation into wolfram alpha and got the real solution as z=-2 and the complex solutions as z=2-4i, z=2+4i. Is that the right answer? How would you get the real solution and the complex solution from the equation then?
Last edited: