- #1
student45
I'm trying to find the sum of this:
[tex]
\[
\sum\limits_{n = 0}^\infty {( - 1)^n nx^n }
\]
[/tex]
This is what I have so far:
[tex]
\[
\begin{array}{l}
\frac{1}{{1 - x}} = \sum\limits_{n = 0}^\infty {x^n } \\
\frac{1}{{(1 - x)^2 }} = \sum\limits_{n = 0}^\infty {nx^{n - 1} } = \sum\limits_{n = 1}^\infty {nx^{n - 1} } \\
\frac{x}{{(1 - x)^2 }} = \sum\limits_{n = 1}^\infty {nx^n } \\
\end{array}
\]
[/tex]
So how do I get the (-1)^n part in there? Any suggestions would be really helpful. Thanks.
[tex]
\[
\sum\limits_{n = 0}^\infty {( - 1)^n nx^n }
\]
[/tex]
This is what I have so far:
[tex]
\[
\begin{array}{l}
\frac{1}{{1 - x}} = \sum\limits_{n = 0}^\infty {x^n } \\
\frac{1}{{(1 - x)^2 }} = \sum\limits_{n = 0}^\infty {nx^{n - 1} } = \sum\limits_{n = 1}^\infty {nx^{n - 1} } \\
\frac{x}{{(1 - x)^2 }} = \sum\limits_{n = 1}^\infty {nx^n } \\
\end{array}
\]
[/tex]
So how do I get the (-1)^n part in there? Any suggestions would be really helpful. Thanks.