- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :D
I am given the following exercise and I have some questions
Calculate the units of $R=\mathbb{Z}[w]=\{ a+bw, a,b \in \mathbb{Z}\} , w=\frac{-1+i \sqrt{3}}{2}$.
In my notes is the following solution:
We remark that $w$ is a root of $x^2+x+1$
So, $w^2+w+1=0 \Rightarrow w^2=-w-1$
$x^3-1=(x-1)(x^2+x+1)$
$w$ is a root of $x^2+x+1$,so $w^3-1=0 \Rightarrow w^3=1 \Rightarrow w^4=w$
$(w^2)^2+w^2+1=w^4+w^2+1=w-w-1+1=0$,so $w^2$ is a root of $x^2+x+1$.
So, $w^2, w$ are conjugate.
Let $x=a+bw \in \mathbb{Z}[w], a,b \in \mathbb{Z} $ an unit.
So,there is $(c+dw) \in \mathbb{Z}[w] $ such that $ (a+bw)(c+dw)=1 $
We take also the conjugate and we get $(a+bw^2)(c+dw^2)=1$
$(a+bw)(a+bw^2)(c+dw)(c+dw^2)=1 \Rightarrow ... \Rightarrow (a^2-ab+b^2)(c^2-cd+d^2)=1 \Rightarrow 4(a^2-ab+b^2)=4a^2-4ab+4b^2=(2a)^2-2 \cdot 2ab + b^2+3b^2=(2a-b)^2+3b^2 >0$
So,$a^2-ab+b^2>0$
So,$a^2-ab+b^2=1$
$4(a^2-ab+b^2)=4 \Rightarrow (2a-b)^2+3b^2=4$
We take cases:
i)$ (2a-b)^2=0$
$3b^2=4 \Rightarrow b^2=\frac{4}{3} \Rightarrow b= \pm \frac{2}{\sqrt{3}} \not\in \mathbb{Z} $,so we reject it!
ii) $(2a-b)^2=1$
$3b^2=3 \Rightarrow b=\pm 1$
We have six couples:
$(a,b)=(1,1): x=1+1 \cdot w=-w^2$
$(a,b)=(0,1): x=w$
$(a,b)=(0,-1): x=-w$
$(a,b)=(-1,1): x=-1-w=w^2$
$(a,b)=(1,0): x=1$
$(a,b)=(-1,0): x=-1$
First of all, how do we know that $w$ is the root of $x^2+x+1$?
Why do we have to know that $w^2$ is also a root of $x^2+x+1$?
At the red part,why the relation is equal to $1$ ?
Why do we take these cases?
(Blush) (Blush)
I am given the following exercise and I have some questions
Calculate the units of $R=\mathbb{Z}[w]=\{ a+bw, a,b \in \mathbb{Z}\} , w=\frac{-1+i \sqrt{3}}{2}$.
In my notes is the following solution:
We remark that $w$ is a root of $x^2+x+1$
So, $w^2+w+1=0 \Rightarrow w^2=-w-1$
$x^3-1=(x-1)(x^2+x+1)$
$w$ is a root of $x^2+x+1$,so $w^3-1=0 \Rightarrow w^3=1 \Rightarrow w^4=w$
$(w^2)^2+w^2+1=w^4+w^2+1=w-w-1+1=0$,so $w^2$ is a root of $x^2+x+1$.
So, $w^2, w$ are conjugate.
Let $x=a+bw \in \mathbb{Z}[w], a,b \in \mathbb{Z} $ an unit.
So,there is $(c+dw) \in \mathbb{Z}[w] $ such that $ (a+bw)(c+dw)=1 $
We take also the conjugate and we get $(a+bw^2)(c+dw^2)=1$
$(a+bw)(a+bw^2)(c+dw)(c+dw^2)=1 \Rightarrow ... \Rightarrow (a^2-ab+b^2)(c^2-cd+d^2)=1 \Rightarrow 4(a^2-ab+b^2)=4a^2-4ab+4b^2=(2a)^2-2 \cdot 2ab + b^2+3b^2=(2a-b)^2+3b^2 >0$
So,$a^2-ab+b^2>0$
So,$a^2-ab+b^2=1$
$4(a^2-ab+b^2)=4 \Rightarrow (2a-b)^2+3b^2=4$
We take cases:
i)$ (2a-b)^2=0$
$3b^2=4 \Rightarrow b^2=\frac{4}{3} \Rightarrow b= \pm \frac{2}{\sqrt{3}} \not\in \mathbb{Z} $,so we reject it!
ii) $(2a-b)^2=1$
$3b^2=3 \Rightarrow b=\pm 1$
- for $b=1$ : $(2a-1)^2=1 \Rightarrow 2a-1= \pm 1$
$2a-1=1 \Rightarrow a=1$
$2a-1=-1 \Rightarrow a=0$ - for $b=-1$ : $(2a+1)^2=1 \Rightarrow 2a+1= \pm 1$
$2a+1=1 \Rightarrow a=0$
$2a+1=-1 \Rightarrow a=-1$
We have six couples:
$(a,b)=(1,1): x=1+1 \cdot w=-w^2$
$(a,b)=(0,1): x=w$
$(a,b)=(0,-1): x=-w$
$(a,b)=(-1,1): x=-1-w=w^2$
$(a,b)=(1,0): x=1$
$(a,b)=(-1,0): x=-1$
First of all, how do we know that $w$ is the root of $x^2+x+1$?
Why do we have to know that $w^2$ is also a root of $x^2+x+1$?
At the red part,why the relation is equal to $1$ ?
Why do we take these cases?
(Blush) (Blush)