- #1
i_love_science
- 80
- 2
- Homework Statement
- Find a vector equation of the plane that passes through the point (6, 0, 0) and contains the line 𝑥 = 4 - 2𝑡, 𝑦 = 2 + 3𝑡, 𝑧 = 3 + 𝑡.
- Relevant Equations
- vector equation
Solution:
u = [-2,3,1]
Po = (6,0,0) & P = (4,2,3)
PoP = v = [-2,2,3]
Therefore, the answer is [6,0,0] + r[-2,3,1] + q[-2,2,3]; r, q are real numbers
I don't understand why (6,0,0) is used as the point in the vector equation, since it only lies on the [-2,2,3] vector, not the u = [-2,3,1] vector.
My answer is r = [4,2,3] + r[2,-2,-3] + q[-2,3,1], r, q are real numbers
Could anyone explain the solution, and is my answer correct? Thanks.
u = [-2,3,1]
Po = (6,0,0) & P = (4,2,3)
PoP = v = [-2,2,3]
Therefore, the answer is [6,0,0] + r[-2,3,1] + q[-2,2,3]; r, q are real numbers
I don't understand why (6,0,0) is used as the point in the vector equation, since it only lies on the [-2,2,3] vector, not the u = [-2,3,1] vector.
My answer is r = [4,2,3] + r[2,-2,-3] + q[-2,3,1], r, q are real numbers
Could anyone explain the solution, and is my answer correct? Thanks.