Finding the velocity of a car in a different frame of reference

AI Thread Summary
The discussion focuses on calculating the velocity of a car from different frames of reference, specifically comparing the road (frame S) and a second car (frame S'). The initial equation for the first car's velocity is given as v = v_0 + at. The Galilean transformation is introduced, leading to confusion about the correct expression for V, which represents the speed of the second car relative to the first. Clarification is provided that V is indeed the speed of the second car with respect to the road, and the final equation simplifies to v' = V, confirming the relationship between the two frames. The conversation highlights the need for precise wording in physics problems to avoid misunderstandings.
Redwaves
Messages
134
Reaction score
7
Homework Statement
A car is moving on a road with a initial speed ##v = v_0## and then it starts to speed up with ##a_0## what's the speed of this car in the frame of reference on a second car moving at the speed V.
Relevant Equations
##v' = (v_0 + at) - V##
Here's what I did so far.
The velocity of the first car is ##v = v_0 +at##

Frame of reference S = the road
Frame of reference S' = the second car

thus, v' is the speed of the first car in the frame of reference S' and v the speed in the frame of reference S.

Here's what make me doubt.
The Galilean transformation
##v' = v - V##
V should be the speed between S and S', in this case what I wrote is wrong.
V should be ##(v_0 + at) - V ##, right?

And then, ##v' = (v_0 + at) - ((v_0 + at) - V)## does it make sense ?
 
Physics news on Phys.org
Redwaves said:
Here's what make me doubt.
The Galilean transformation
##v' = v - V##
V should be the speed between S and S', in this case what I wrote is wrong.
V should be ##(v_0 + at) - V ##, right?

And then, ##v' = (v_0 + at) - ((v_0 + at) - V)## does it make sense ?
You were correct the first time. V is the speed of the second car (and thus frame S') with respect to S.

Realize that your final equation becomes ##v' = (v_0 + at) - ((v_0 + at) - V) = V##. Does that make sense?
 
I see. I didn't realize that the road is at rest... Of course the speed between S and S' is V.
Thanks!
 
Redwaves said:
Homework Statement:: A car is moving on a road with a initial speed ##v = v_0## and then it starts to speed up with ##a_0## what's the speed of this car in the frame of reference on a second car moving at the speed V.
If someone is going to set questions like this, they ought to be more precise, IMO:

A car is moving on relative to a road with an initial speed velocity ##v = v_0## and then it starts to speed up with accelerate at ##a_0##. What's the speed velocity of this car in the frame of reference of a second car moving at the speed velocity V relative to the road.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top