- #1
shamieh
- 539
- 0
Need someone to verify that my work is correct please. Consider the region bounded by $y = sin(x)$ and the x - axis from $ x = 0$ to $x = \pi$
a) Find the volume if the region is rotated about the x - axis.
\(\displaystyle V = \int \pi (sin(x))^2 \, dx\)
\(\displaystyle \pi \int^{\pi}_0 sin^2x \, dx\)
\(\displaystyle \pi \int^{\pi}_0 \frac{(1 - cos2x)}{2} \, dx\)
\(\displaystyle \frac{1}{2} \pi \int^{\pi}_0 cos2x \, dx\)
\(\displaystyle \frac{1}{4} \pi \int^{\pi}_0 cos(u) \, dx\)
\(\displaystyle u = 2x\)
\(\displaystyle \frac{du}{2} = dx\)
After updating the limits I get $\int^0_0$ thus: $0$
So I'm left with \(\displaystyle \frac{1}{4}\pi\)
a) Find the volume if the region is rotated about the x - axis.
\(\displaystyle V = \int \pi (sin(x))^2 \, dx\)
\(\displaystyle \pi \int^{\pi}_0 sin^2x \, dx\)
\(\displaystyle \pi \int^{\pi}_0 \frac{(1 - cos2x)}{2} \, dx\)
\(\displaystyle \frac{1}{2} \pi \int^{\pi}_0 cos2x \, dx\)
\(\displaystyle \frac{1}{4} \pi \int^{\pi}_0 cos(u) \, dx\)
\(\displaystyle u = 2x\)
\(\displaystyle \frac{du}{2} = dx\)
After updating the limits I get $\int^0_0$ thus: $0$
So I'm left with \(\displaystyle \frac{1}{4}\pi\)