- #1
ChessEnthusiast
- 115
- 3
Imagine such situation:
There is a sniper who fires his rifle, the bullet travels at the initial speed of, say, 1400 m/s. His target is standing 2000 meters away and the wind is blowing at 30 m/s opposing the bullet's motion. Let's assume that the bullet is fired in a straight lane and it may fall the maximum of 0.5 m to still hit the target.
After how many seconds (if at all) will the target be hit?
Let's also assume that the cross-sectional area and the drag coefficient of the bullet is known.
Is there a way to calculate the force the wind will be opposing the motion of the bullet with?
There is a sniper who fires his rifle, the bullet travels at the initial speed of, say, 1400 m/s. His target is standing 2000 meters away and the wind is blowing at 30 m/s opposing the bullet's motion. Let's assume that the bullet is fired in a straight lane and it may fall the maximum of 0.5 m to still hit the target.
After how many seconds (if at all) will the target be hit?
Let's also assume that the cross-sectional area and the drag coefficient of the bullet is known.
Is there a way to calculate the force the wind will be opposing the motion of the bullet with?