- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to find the vertices of the polyhedron that the following relations define:$$x_1+ x_2+ x_3+ x_4=2 \\ x_1-x_2+x_3-x_4=1 \\ x_1+x_2-x_3+x_4=1 \\ |x_i| \leq 1, i \in \{ 1, \dots, 4\}$$
I have thought to set $y_i=x_i+1$ since the simplex method requires the variables to be positive or zero.
Then I found the following equations:
$$y_1+y_2+y_3+y_4=6 \\ y_1-y_2+y_3-y_4=1 \\ y_1+y_2-y_3+y_4=3$$
$$0 \leq y_i \leq 2, i \in \{ 1, \dots, 4 \}$$
$A=\begin{bmatrix}
1 & 1 & 1 & 1\\
1 & -1 & 1 &-1 \\
1 & 1 & -1 & 1
\end{bmatrix}$
The rank of $A$ is $3$.$P_1=\begin{bmatrix}
1\\
1\\
1
\end{bmatrix}, P_2=\begin{bmatrix}
1\\
-1\\
1
\end{bmatrix}, P_3=\begin{bmatrix}
1\\
1\\
-1
\end{bmatrix}, P_4=\begin{bmatrix}
1\\
0\\
0
\end{bmatrix}$
Are the non-degenarate basic feasible solutions that I have found right?
If so, are they the same for the initial relations that are given? (Thinking)
I want to find the vertices of the polyhedron that the following relations define:$$x_1+ x_2+ x_3+ x_4=2 \\ x_1-x_2+x_3-x_4=1 \\ x_1+x_2-x_3+x_4=1 \\ |x_i| \leq 1, i \in \{ 1, \dots, 4\}$$
I have thought to set $y_i=x_i+1$ since the simplex method requires the variables to be positive or zero.
Then I found the following equations:
$$y_1+y_2+y_3+y_4=6 \\ y_1-y_2+y_3-y_4=1 \\ y_1+y_2-y_3+y_4=3$$
$$0 \leq y_i \leq 2, i \in \{ 1, \dots, 4 \}$$
$A=\begin{bmatrix}
1 & 1 & 1 & 1\\
1 & -1 & 1 &-1 \\
1 & 1 & -1 & 1
\end{bmatrix}$
The rank of $A$ is $3$.$P_1=\begin{bmatrix}
1\\
1\\
1
\end{bmatrix}, P_2=\begin{bmatrix}
1\\
-1\\
1
\end{bmatrix}, P_3=\begin{bmatrix}
1\\
1\\
-1
\end{bmatrix}, P_4=\begin{bmatrix}
1\\
0\\
0
\end{bmatrix}$
- $P_1, P_2, P_3$ are linearly independent.
We solve the system $P_1 y_1+ P_2 y_2+ P_3 y_3=\begin{bmatrix}
6\\
1\\
3
\end{bmatrix}$ and we get the basic feasible non-degenate solution $\left( 2, \frac{5}{2}, \frac{3}{2}, 0 \right)$.
- $P_1, P_2, P_4$ are linearly independent.
We solve the system $P_1 y_1+ P_2 y_2+ P_4 y_4=\begin{bmatrix}
6\\
1\\
3
\end{bmatrix}$ and we get the basic feasible non-degenate solution $\left( 2, 1,0, 5 \right)$.
- $P_2, P_3, P_4$ are linearly independent.
We solve the system $P_2 y_2+ P_3 y_3+ P_4 y_4=\begin{bmatrix}
6\\
1\\
3
\end{bmatrix}$ and and we see that it cannot be satisfied.
Are the non-degenarate basic feasible solutions that I have found right?
If so, are they the same for the initial relations that are given? (Thinking)