MHB Finding x in Logarithmic Equation

  • Thread starter Thread starter hola1
  • Start date Start date
  • Tags Tags
    Logarithmic
AI Thread Summary
The discussion revolves around solving the logarithmic equation log2(2^(x-1) + 3^(x+1)) = 2x - log2(3^x), leading to the solution x = -1.70951. Participants outline steps to manipulate the equation using logarithmic properties, ultimately equating logs to simplify the expression. The transformation results in a form that can be approached with numerical methods, as an algebraic solution is not feasible. The final consensus confirms the numerical solution aligns with the provided answer. The discussion emphasizes the complexity of solving logarithmic equations and the utility of numerical methods in such cases.
hola1
Messages
1
Reaction score
0
Hi, sorry if it's not in the right subforum. idk how to solve x:
http://puu.sh/2Lbb1.png
The answer is x = -1.70951.
how do we get there? please explain everystep. thanks :3

****someone made it this far, idk if it is the correct path:
log2 (2^(x-1)+3^(x+1)) = 2x - log2 (3^x)
log2 (2^(x-1)+3^(x+1)) + log2 (3^x) = 2x
because of the rule log(m) + log(n) = log(mn),
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log ((2^(x-1)+3^(x+1))*(3^x) / log 2 = 2x
log ((2^(x-1)+3^(x+1))*(3^x) = 2x * log 2
log ((2^(x-1)+3^(x+1))*(3^x) = log 2^(2x)
equate the logs
(2^(x-1) + 3^(x+1))*(3^x) = 2^(2x)
2^(x-1) * 3^x + 3^(2x+1) = 2^(2x)
3^(2x+1) = 2^(2x) - 2^(x-1) * 3^x
 
Mathematics news on Phys.org
Re: logarithm

Seems like kind of a struggle, but you are getting good practice playing with the logarithms.

I might do this:

\log_{2}\left(2^{x-1}+3^{x+1}\right) = 2x - \log_{2}\left(3^{x}\right) = \log_{2}\left(2^{2x}\right)- \log_{2}\left(3^{x}\right) = \log_{2}\left(\dfrac{2^{2x}}{3^{x}}\right)

This leads a little more quickly to a version with no logs which may not be as useful as you think.

2^{x-1} + 3^{x+1} = 2^{2x}\cdot 3^{-x} = \left(\dfrac{4}{3}\right)^{x}

There is no way to solve that, so you are really left with numerical methods, which probably causes you to reintroduce the logarithms.

Can you take it from there?

I get x = -1.70951129135145, which certainly agrees with your given solution.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top