- #1
hola1
- 1
- 0
Hi, sorry if it's not in the right subforum. idk how to solve x:
http://puu.sh/2Lbb1.png
The answer is x = -1.70951.
how do we get there? please explain everystep. thanks :3
****someone made it this far, idk if it is the correct path:
log2 (2^(x-1)+3^(x+1)) = 2x - log2 (3^x)
log2 (2^(x-1)+3^(x+1)) + log2 (3^x) = 2x
because of the rule log(m) + log(n) = log(mn),
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log ((2^(x-1)+3^(x+1))*(3^x) / log 2 = 2x
log ((2^(x-1)+3^(x+1))*(3^x) = 2x * log 2
log ((2^(x-1)+3^(x+1))*(3^x) = log 2^(2x)
equate the logs
(2^(x-1) + 3^(x+1))*(3^x) = 2^(2x)
2^(x-1) * 3^x + 3^(2x+1) = 2^(2x)
3^(2x+1) = 2^(2x) - 2^(x-1) * 3^x
http://puu.sh/2Lbb1.png
The answer is x = -1.70951.
how do we get there? please explain everystep. thanks :3
****someone made it this far, idk if it is the correct path:
log2 (2^(x-1)+3^(x+1)) = 2x - log2 (3^x)
log2 (2^(x-1)+3^(x+1)) + log2 (3^x) = 2x
because of the rule log(m) + log(n) = log(mn),
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log ((2^(x-1)+3^(x+1))*(3^x) / log 2 = 2x
log ((2^(x-1)+3^(x+1))*(3^x) = 2x * log 2
log ((2^(x-1)+3^(x+1))*(3^x) = log 2^(2x)
equate the logs
(2^(x-1) + 3^(x+1))*(3^x) = 2^(2x)
2^(x-1) * 3^x + 3^(2x+1) = 2^(2x)
3^(2x+1) = 2^(2x) - 2^(x-1) * 3^x