- #1
milkism
- 118
- 15
- Homework Statement
- Finding P(x, t>0) and <x>.
- Relevant Equations
- See under.
I have this 1D LHO problem.
https://gyazo.com/4cd913d9da3a743443ef7dc2d1c2ab1e
For ##\psi_n (x)## I get
$$\left( \frac{\alpha}{\sqrt{\pi} 2^n n!} \right) ^{\frac{1}{2}} e^{\frac{- \alpha^2 x^2}{2}} H_n(x)$$
with ##E_n = (n+ \frac{1}{2}) \hat{h} \omega##. where ##\hat{h}## is hbar.
For ##\psi_{n+1}(x)## I get
$$ \left( \frac{ \alpha }{ \sqrt{\pi} 2^{n+1} (n+1)!} \right) ^{\frac{1}{2}} e^{ \frac{- \alpha^2 x^2}{2}} H_{n+1}(x)$$
with ##E_{n+1} = ((n+1)+ \frac{1}{2}) \hat{h} \omega##
We can find ##\Psi(x,t>0)## by multiplying the eigenfunctions with their corresponding factors and eigenenergies in the form of ##\e^{-\frac{i}{\hat{h} E_n t}}##, to find ##P(x, t>0)## we basically take ##|\Psi(x, t>0)|^2## which I think will be a long expression.
But how can we find <x>, if we don't know the actual expressions for the Hermite polynomials? How can we compute the integral?
https://gyazo.com/4cd913d9da3a743443ef7dc2d1c2ab1e
For ##\psi_n (x)## I get
$$\left( \frac{\alpha}{\sqrt{\pi} 2^n n!} \right) ^{\frac{1}{2}} e^{\frac{- \alpha^2 x^2}{2}} H_n(x)$$
with ##E_n = (n+ \frac{1}{2}) \hat{h} \omega##. where ##\hat{h}## is hbar.
For ##\psi_{n+1}(x)## I get
$$ \left( \frac{ \alpha }{ \sqrt{\pi} 2^{n+1} (n+1)!} \right) ^{\frac{1}{2}} e^{ \frac{- \alpha^2 x^2}{2}} H_{n+1}(x)$$
with ##E_{n+1} = ((n+1)+ \frac{1}{2}) \hat{h} \omega##
We can find ##\Psi(x,t>0)## by multiplying the eigenfunctions with their corresponding factors and eigenenergies in the form of ##\e^{-\frac{i}{\hat{h} E_n t}}##, to find ##P(x, t>0)## we basically take ##|\Psi(x, t>0)|^2## which I think will be a long expression.
But how can we find <x>, if we don't know the actual expressions for the Hermite polynomials? How can we compute the integral?
Last edited: