MHB Finite element method for the construction of the approximation of the solution

AI Thread Summary
The discussion focuses on applying the finite element method to solve a specified two-point boundary value problem involving a differential equation. The proposed approach involves using a finite element space of continuous and partially linear functions, leading to a weak formulation of the problem. The user seeks validation of their method, particularly whether the chosen test function \( g \) meets the boundary conditions \( g(0)=0 \) and \( g'(1)=mg(1) \). There is a request for clarification on whether this method is correct or if alternative approaches exist. The conversation emphasizes the importance of ensuring that the test functions adhere to the problem's constraints.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Given the following two-point problem:
$$-y''(x)+(by)'(x)=f(x), \forall x \in [0,1]$$
$$y(0)=0, y'(1)=my(1)$$
where $ b \in C^1([0,1];R), f \in C([0,1];R)$ and $ m \in R$ a constant.
Give a finite element method for the construction of the approximation of the solution $y$ of the problem above, where the finite element space ($S$) consists of continuous and partially linear functions.

My idea is the following:
$ u \in S:$
$$ -\int_0^1{u''g}dx+ \int_0^1{bu'g}dx= \int_0^1{fg}dx$$
$$ -u'g|_0^1+ \int_0^1{u'g'}dx+ \int_0^1{bu'g}dx= \int_0^1{fg}dx$$
$$-mu(1)+g(1)+ \int_0^1{u'g'}dx+ \int_0^1{bu'g}dx= \int_0^1{fg}dx$$
$ \forall g \in S$

Could you tell me if this is correct?
 
Last edited by a moderator:
Mathematics news on Phys.org
To find the method we take a function $g$ of $S$, right? Does this function satisfy the conditions of the problem? I mean $g(0)=0, g'(1)=mg(1)$... Or is there an other way to find the method?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top