- #1
gnome
- 1,041
- 1
The "first central moment" of a real-valued function
[tex]\mu_1 \equiv \int_{-\infty}^\infty (x - \mu) f(x)\,dx = 0[/tex]
where
[tex]\mu \equiv \int_{-\infty}^\infty x\, f(x)\,dx[/tex]
so we have
[tex]\int_{-\infty}^\infty (x - \left ( \int_{-\infty}^\infty x\, f(x)\,dx \right ) ) f(x)\,dx = 0[/tex]
Intuitively, it seems to make sense, but how do we manipulate those integrals to prove this equality?
[tex]\mu_1 \equiv \int_{-\infty}^\infty (x - \mu) f(x)\,dx = 0[/tex]
where
[tex]\mu \equiv \int_{-\infty}^\infty x\, f(x)\,dx[/tex]
so we have
[tex]\int_{-\infty}^\infty (x - \left ( \int_{-\infty}^\infty x\, f(x)\,dx \right ) ) f(x)\,dx = 0[/tex]
Intuitively, it seems to make sense, but how do we manipulate those integrals to prove this equality?