- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :)
I am looking at the theorem:
"$f:[a,b] \to \mathbb{R}$ integrable
We suppose the function $F:[a,b] \to \mathbb{R}$ with $F(x)=\int_a^x f$.If $x_0$ a point where $f$ is continuous $\Rightarrow F$ is integrable at $ x_0$ and $F'(x_0)=f(x_0)$".
There is a remark that the theorem stands only if $f$ is continuous and there is the following example:
$f(x)=\left\{\begin{matrix}
-1,-1 \leq x \leq 0\\
1,0 < x \leq 1
\end{matrix}\right.$
which is not continuous at $0$.
Then,according to the textbook, the function $F(x)$ is equal to $|x|-1$..But,why is it like that??And also why is $F$ not differentiable at $0$??
I am looking at the theorem:
"$f:[a,b] \to \mathbb{R}$ integrable
We suppose the function $F:[a,b] \to \mathbb{R}$ with $F(x)=\int_a^x f$.If $x_0$ a point where $f$ is continuous $\Rightarrow F$ is integrable at $ x_0$ and $F'(x_0)=f(x_0)$".
There is a remark that the theorem stands only if $f$ is continuous and there is the following example:
$f(x)=\left\{\begin{matrix}
-1,-1 \leq x \leq 0\\
1,0 < x \leq 1
\end{matrix}\right.$
which is not continuous at $0$.
Then,according to the textbook, the function $F(x)$ is equal to $|x|-1$..But,why is it like that??And also why is $F$ not differentiable at $0$??