- #1
lfdahl
Gold Member
MHB
- 749
- 0
Suppose a pond contains $x(t)$ fish at time $t$, and $x(t)$ changes according to the DE:
\[\frac{\mathrm{d} x}{\mathrm{d} t} = x\left ( 1-\frac{x}{x_0} \right )-R_f\]
where $x_0$ is the equilibrium amount with no fishing and $R_f > 0$ is the constant rate of removal due to fishing. Assume $x(0) = \frac{x_0}{2}$.
(a). If $R_f < \frac{x_0}{4}$, solve for $x(t)$ and show that it tends to an equilibrium amount between $\frac{x_0}{2}$ and $x_0$.
(b). What happens if $R_f \geq \frac{x_0}{4}$?
\[\frac{\mathrm{d} x}{\mathrm{d} t} = x\left ( 1-\frac{x}{x_0} \right )-R_f\]
where $x_0$ is the equilibrium amount with no fishing and $R_f > 0$ is the constant rate of removal due to fishing. Assume $x(0) = \frac{x_0}{2}$.
(a). If $R_f < \frac{x_0}{4}$, solve for $x(t)$ and show that it tends to an equilibrium amount between $\frac{x_0}{2}$ and $x_0$.
(b). What happens if $R_f \geq \frac{x_0}{4}$?