- #1
Dafe
- 145
- 0
Homework Statement
In the space of 2 by 2 matrices, find a basis for the subspace of matrices whose row sums and column sums are all equal. (Extra credit: Find five linearly independent 3 by 3 matrices with this property)
The Attempt at a Solution
The first one is ok. The matrix is symmetric and toeplitz :
[tex]
\left[ \begin{array}{cc} a_{ii} & a_{ij} \\ a_{ij} & a_{ii} \end{array} \right]
[/tex]
A basis would then be:
[tex]
\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]
[/tex]
and
[tex]
\left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]
[/tex]
Now for that yummy extra credit (which I never get):
[tex]
\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{11} & a_{23} \\ a_{13} & a_{23} & a_{11} \end{array} \right]
[/tex]
I think I can find four linearly independent 3 by 3 matrices:
[tex]
\left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]
[/tex]
[tex]
\left[ \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right]
[/tex]
[tex]
\left[ \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]
[/tex]
[tex]
\left[ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]
[/tex]
I do not see where I could fit a fifth one..
Any suggestions?
Thanks!