MHB Five, Phi and Pi in one integral = −5ϕπ

  • Thread starter Thread starter Tony1
  • Start date Start date
  • Tags Tags
    Integral Phi Pi
AI Thread Summary
The integral $$\int_{0}^{\pi/2} \frac{\ln(\sin^2 x)}{\sin(2x)} \cdot \sqrt[5]{\tan(x)} \, dx$$ is proposed to equal $$-5\phi\pi$$, where $\phi$ is the golden ratio. Some participants question the validity of this result, suggesting an alternative outcome of $$-\frac{5\pi}{\phi}$$. A key point of discussion revolves around the relationship between sine values and the golden ratio, specifically noting that $$\sin(\pi/10) = \frac{1}{2\phi}$$. The conversation emphasizes the need for clarity on the integral's evaluation and the potential error in the proposed result.
Tony1
Messages
9
Reaction score
0
$$\int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx=-5\phi \pi$$

$\phi$ is the golden ratio

Make $u=\tan x$

$${1\over 2}\int_{0}^{\infty}u^{-{4\over 5}}\ln\left({1+u^2\over u^2}\right)\mathrm du$$

hmmm, too complicate to continue.
Any help, please. Thank you!
 
Last edited:
Mathematics news on Phys.org
Is there an error in the result? I'm getting

$$I = \int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx = -\frac{5 \pi}{\phi}$$.
 
Theia said:
Is there an error in the result? I'm getting

$$I = \int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx = -\frac{5 \pi}{\phi}$$.

Taking your substitution $$u = \tan x$$, one obtains

$$I = -\frac{1}{2}\int _0^{\infty}u^{-4/5}\ln \left( \frac{1+u^2}{u^2} \right) \mathrm d u$$.

Now taking $$\frac{1+u^2}{u^2} = q$$, the integral becomes

$$I = -\frac{1}{4}\int _1 ^{\infty} \ln q \ (q - 1)^{-11/10} \mathrm dq.$$

Let's then integrate by parts ($$ \mathrm d f = \ln q$$) and one obtains

$$I = -\frac{5}{2}\int _1 ^{\infty} q^{-1} \ (q - 1)^{-1/10} \mathrm dq.$$

One more substitution: $$1 - \dfrac{1}{q} = p$$ and one obtains

$$I = -\frac{5}{2}\int _0 ^1 p^{-1/10} \ (1 - p)^{-9/10} \mathrm dp.$$

By definition of the Beta function one reads this as

$$I =-\frac{5}{2} \beta \left( \frac{9}{10}, \frac{1}{10} \right) = -\frac{5}{2} \frac{\pi}{\sin \tfrac{\pi}{10}} = -\frac{5\pi}{\phi}$$.
 
Last edited:
Theia said:
Taking your substitution $$u = \tan x$$, one obtains

$$I = -\frac{1}{2}\int _0^{\infty}u^{-4/5}\ln \left( \frac{1+u^2}{u^2} \right) \mathrm d u$$.

Now taking $$\frac{1+u^2}{u^2} = q$$, the integral becomes

$$I = -\frac{1}{4}\int _1 ^{\infty} \ln q \ (q - 1)^{-11/10} \mathrm dq.$$

Let's then integrate by parts ($$ \mathrm d f = \ln q$$) and one obtains

$$I = -\frac{5}{2}\int _1 ^{\infty} q^{-1} \ (q - 1)^{-1/10} \mathrm dq.$$

One more substitution: $$1 - \dfrac{1}{q} = p$$ and one obtains

$$I = -\frac{5}{2}\int _0 ^1 p^{-1/10} \ (1 - p)^{-9/10} \mathrm dp.$$

By definition of the Beta function one reads this as

$$I =-\frac{5}{2} \beta \left( \frac{9}{10}, \frac{1}{10} \right) = -\frac{5}{2} \frac{\pi}{\sin \tfrac{\pi}{10}} = -\frac{5\pi}{\phi}$$.

Note $$\sin(\pi/10)={1\over 2\phi}$$

$$-{5\over 2}\cdot {\pi\over \sin(\pi/10)}=-5\pi\phi$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top