- #1
Tony1
- 17
- 0
$$\int_{0}^{\pi\over 2}{\ln(\sin^2 x)\over \sin(2x)}\cdot \sqrt[5]{\tan(x)}\mathrm dx=-5\phi \pi$$
$\phi$ is the golden ratio
Any help, please. Thank you!
$\phi$ is the golden ratio
Make $u=\tan x$
$${1\over 2}\int_{0}^{\infty}u^{-{4\over 5}}\ln\left({1+u^2\over u^2}\right)\mathrm du$$
hmmm, too complicate to continue.
$${1\over 2}\int_{0}^{\infty}u^{-{4\over 5}}\ln\left({1+u^2\over u^2}\right)\mathrm du$$
hmmm, too complicate to continue.
Last edited: