- #1
miglo
- 98
- 0
Homework Statement
let [tex]S={(a_1,a_2):a_1,a_2 \in \mathbb{R}}[/tex] For [tex] (a_1,a_2),(b_1,b_2)\in{S}[/tex] and [tex]c\in\mathbb{R}[/tex] define [tex](a_1,a_2)+(b_1,b_2)=(a_1+b_1,a_2-b_2)[/tex] and [tex]c(a_1,a_2)=(ca_1,ca_2)[/tex].
show that this is not a vector space
Homework Equations
vector space axioms
The Attempt at a Solution
this isn't an exercise in the book, but an example from the book that states that commutativity and associativity of addition and the distributive law all fail, so this in fact is not a vector space
i tried working these out and i think i got commutativity one right
because then you have [tex](a_1+b_1,a_2-b_2)[/tex] does not equal [tex](b_1+a_1,b_2-a_2)[/tex] is this correct?
i got stuck on associativity, i worked it out but to me it seems that it does in fact hold true
haven't check the distributive law though
the book I am using is linear algebra by friedberg, insel and spence, second edition