- #1
avenged*7
- 11
- 0
Hello,
I am working on a solo project outside my domain of expertise (Physics PhD student). I am trying to analyze/replicate the wave phenomena shown in the following video:
To summarize what I am doing:
Since my primary interest is for shallow and wide pools, I am assuming that scaling up the calculations should be rather trivial as long as λ >> h. However, I do not have an expression for λ. I have only observed the "nodal circles" to be near (but not at) the boundaries. I can't be sure until I have an expression. I believe that I found the appropriate dispersion relation. If these waves are resonant capillary-gravity waves then I should have something like:
ω2 = |k|(ρwater + ρair)-1[(ρwater-ρair)g + σk2],
where ω is the frequency, k is the wavenumber, ρ are the densities, g is gravitational acceleration, and σ is the surface tension. This comes from Airy wave theory. For a cylindrical geometry, I have something like
η(r,θ,t) = (1/g) Σm∑n αmncos(mθ)Jm(λmnr)cosh(λmnh)[ωmncos(ωmnt)],
where αmn is TBD, Jm is a Bessel function of 1st kind (order m), h is the water depth, m=(0,...,inf), and n=(1,...,inf). Furthermore, since we appear to be generating a fundamental mode, I think I can take m = 0.
Hopefully, this much is correct. The next and most formidable part is how to add the forcing over a finite region of the surface (like over a circle of radius R). The problem seems simple at first, but turns out to be quite difficult. I spoke with a mathematician who specializes in fluid flow and he said "that's hard". He recommended incorporating it into the pressure, but I am having a hard time figuring out how to make that happen. The only idea I have is to partition the pool into regions (one with gravity, and one with gravity plus the forcing) and use derivatives to stitch them together, as I have done in certain problems in Quantum Mechanics.
The slosh dynamics books and papers focused on moving the container itself, not moving the fluid with the container fixed. I assume that moving to the coordinate system of the container would be similar, but I'm not sure you can simply discard the inertial terms.
I guess I am asking if I am on the right track and if there are any simple ways to incorporate the forcing. I tried doing stuff computationally and quickly realized it was over my head. Then, I tried to use ELMER to do some work for me, but it quickly got too technical. Any help is welcome.
I am working on a solo project outside my domain of expertise (Physics PhD student). I am trying to analyze/replicate the wave phenomena shown in the following video:
To summarize what I am doing:
- I need to analyze a simple (cylindrical) pool, say 17.5" wide, 4" deep
- Figure out how to periodically force over a finite region
- Find the expression for surface height η
- Find the expression for wavelength λ
- Determine the decay time of the wave (not sure the expression for half-life τ=ln(2)/λ works here)
- Scale up to larger dimensions and repeat
Since my primary interest is for shallow and wide pools, I am assuming that scaling up the calculations should be rather trivial as long as λ >> h. However, I do not have an expression for λ. I have only observed the "nodal circles" to be near (but not at) the boundaries. I can't be sure until I have an expression. I believe that I found the appropriate dispersion relation. If these waves are resonant capillary-gravity waves then I should have something like:
ω2 = |k|(ρwater + ρair)-1[(ρwater-ρair)g + σk2],
where ω is the frequency, k is the wavenumber, ρ are the densities, g is gravitational acceleration, and σ is the surface tension. This comes from Airy wave theory. For a cylindrical geometry, I have something like
η(r,θ,t) = (1/g) Σm∑n αmncos(mθ)Jm(λmnr)cosh(λmnh)[ωmncos(ωmnt)],
where αmn is TBD, Jm is a Bessel function of 1st kind (order m), h is the water depth, m=(0,...,inf), and n=(1,...,inf). Furthermore, since we appear to be generating a fundamental mode, I think I can take m = 0.
Hopefully, this much is correct. The next and most formidable part is how to add the forcing over a finite region of the surface (like over a circle of radius R). The problem seems simple at first, but turns out to be quite difficult. I spoke with a mathematician who specializes in fluid flow and he said "that's hard". He recommended incorporating it into the pressure, but I am having a hard time figuring out how to make that happen. The only idea I have is to partition the pool into regions (one with gravity, and one with gravity plus the forcing) and use derivatives to stitch them together, as I have done in certain problems in Quantum Mechanics.
The slosh dynamics books and papers focused on moving the container itself, not moving the fluid with the container fixed. I assume that moving to the coordinate system of the container would be similar, but I'm not sure you can simply discard the inertial terms.
I guess I am asking if I am on the right track and if there are any simple ways to incorporate the forcing. I tried doing stuff computationally and quickly realized it was over my head. Then, I tried to use ELMER to do some work for me, but it quickly got too technical. Any help is welcome.
Last edited: