- #1
member 428835
Hi PF!
In fluids I've noticed many authors use the continuity equation with an integral form of conservation of volume (assume density is constant). Is this double counting? Example: let fluid velocity inside an idle bubble be ##\vec u = \nabla \phi##. Conservation of mass implies ##\nabla u = 0 \implies \nabla^2\phi = 0##. Let the surface be perturbed, so conservation of volume requires ##\int_S \nabla \phi \cdot \hat n \, dS = 0## where ##S## is the bubble surface and ##\hat n## is a unit normal to ##S##.
Why use both?
In fluids I've noticed many authors use the continuity equation with an integral form of conservation of volume (assume density is constant). Is this double counting? Example: let fluid velocity inside an idle bubble be ##\vec u = \nabla \phi##. Conservation of mass implies ##\nabla u = 0 \implies \nabla^2\phi = 0##. Let the surface be perturbed, so conservation of volume requires ##\int_S \nabla \phi \cdot \hat n \, dS = 0## where ##S## is the bubble surface and ##\hat n## is a unit normal to ##S##.
Why use both?