- #1
Xsnac
- 32
- 1
Homework Statement
Compute the flux of a vector field ##\vec{v}## through the unit sphere, where
$$ \vec{v} = 3xy i + x z^2 j + y^3 k $$
Homework Equations
Gauss Law:
$$ \int (\nabla \cdot \vec{B}) dV = \int \vec{B} \cdot d\vec{a}$$
The Attempt at a Solution
Ok so after applying Gauss Law, one gets
$$ \int 3y dV $$
and after converting it into a spherical integral I get
$$3 \int_0^{ \pi} \sin^2 \theta d \theta \int_0^{2 \pi} \sin \phi d \phi = 0$$ since integral of sin over a full period is. Is this correct? or if not, where did I go wrong?