- #1
DottZakapa
- 239
- 17
- Homework Statement
- Consider the vector field F (x, y, z) = (0, z, y) and the surface Σ= (x,y,z)∈R^3 : x=2y^2z^2, 0≤y≤2, 0≤z≤1
oriented so that its normal vector forms an acute angle with the fundamental versor of the x–axis. Compute the flux of F through Σ.
- Relevant Equations
- flux of F through sigma
Given
##F (x, y, z) = (0, z, y)## and the surface ## \Sigma = (x,y,z)∈R^3 : x=2 y^2 z^2, 0≤y≤2, 0≤z≤1##
i have parametrised as follows
##\begin{cases}
x=2u^2v^2\\
y=u\\
z=v\\
\end{cases}##
now I find the normal vector in the following way
##\begin{vmatrix}
i & j & k \\
\frac {\partial x} {\partial u} & \frac {\partial y} {\partial u}& \frac {\partial z} {\partial u} \\
\frac {\partial x} {\partial v} & \frac {\partial y} {\partial v}& \frac {\partial z} {\partial v} \\
\end{vmatrix} =
\begin{vmatrix}
i & j & k \\
4uv^2 & 1 & 0 \\
4u^2v & 0 & 1\\
\end{vmatrix} = \vec i(1)-\vec j(4uv^2)+\vec k(- 4u^2v) ##
##\Rightarrow N(u,v) = (1,-4uv^2,- 4u^2v) ##
Is there anything wrong on the normal vectors signs? what having an acute angle with x translates in?
I don't understand why in the solution the second and third components have negative sign.
##F (x, y, z) = (0, z, y)## and the surface ## \Sigma = (x,y,z)∈R^3 : x=2 y^2 z^2, 0≤y≤2, 0≤z≤1##
i have parametrised as follows
##\begin{cases}
x=2u^2v^2\\
y=u\\
z=v\\
\end{cases}##
now I find the normal vector in the following way
##\begin{vmatrix}
i & j & k \\
\frac {\partial x} {\partial u} & \frac {\partial y} {\partial u}& \frac {\partial z} {\partial u} \\
\frac {\partial x} {\partial v} & \frac {\partial y} {\partial v}& \frac {\partial z} {\partial v} \\
\end{vmatrix} =
\begin{vmatrix}
i & j & k \\
4uv^2 & 1 & 0 \\
4u^2v & 0 & 1\\
\end{vmatrix} = \vec i(1)-\vec j(4uv^2)+\vec k(- 4u^2v) ##
##\Rightarrow N(u,v) = (1,-4uv^2,- 4u^2v) ##
Is there anything wrong on the normal vectors signs? what having an acute angle with x translates in?
I don't understand why in the solution the second and third components have negative sign.
Last edited: