- #1
Guillem_dlc
- 188
- 17
- Homework Statement
- Calculate the flux of the electric field that crosses a cube with vertices at the points (coordinated in meters): ##A(0,0,0)##, ##B(4,0,0)##, ##C(4,0,4)##, ##D(0,0,4)##, ##E(0,4,4)##, ##F(0,4,0)##, ##G(4,4,0)##, ##H(4,4,4)## located in a region of space where there is an electric field:
a) ##\vec{E}=10^4\, \widehat{i}\, (\textrm{N}/\textrm{C})##
b) ##\vec{E}=300x\, \widehat{i}\, (\textrm{N}/\textrm{C})##
c) ##\vec{E}=60x^2\, \widehat{i}-1000y\, \widehat{j}+3000\, \widehat{k}\, (\textrm{N}/\textrm{C})##
Answers: a) ##\phi=0##, b) ##\phi=1,9\cdot 10^4\, \textrm{Nm}^2/\textrm{C}##, c) ##\phi=-4,9\cdot 10^4\, \textrm{Nm}^2/\textrm{C}##.
- Relevant Equations
- ##\phi = \vec{E}\cdot \vec{S}##
a) $$\phi_T=\phi_F-\phi_I=10^4\cdot 4\cdot 4-10^4\cdot 4\cdot 4=0\, \textrm{Nm}^2/\textrm{C}$$
b) $$\phi_F=\underbrace{300\cdot 4}_{\vec{E}}\cdot \underbrace{4\cdot 4}_{\textrm{area}}=19200\, \textrm{Nm}^2/\textrm{C}$$
$$\phi_0 = 300\cdot 0\cdot 4\cdot 4=0\, \textrm{Nm}^2/\textrm{C}$$
Then,
$$\phi_T=\phi_F-\phi_0=19200\, \textrm{Nm}^2/\textrm{C}$$
c) ##x## axis: $$E_x=6x^2\, \widehat{i}\rightarrow \phi_x=\phi_F-\phi_0=60\cdot 16\cdot 4\cdot 4-0=15360\, \textrm{Nm}^2/\textrm{C}$$
##y## axis: $$E_y=1000y\rightarrow \phi_y=\phi_F-\phi_0=0-1000\cdot 4\cdot 4\cdot 4=-64000\, \textrm{Nm}^2/\textrm{C}$$
##z## axis: $$E_x=3000\rightarrow \phi_z=\phi_F-\phi_0\rightarrow \phi_F=\phi_0\rightarrow \phi_z=0\, \textrm{Nm}^2/\textrm{C}$$
How should I do that in part c)? I would do the module of this to calculate the flux but it doesn't give the answer.
b) $$\phi_F=\underbrace{300\cdot 4}_{\vec{E}}\cdot \underbrace{4\cdot 4}_{\textrm{area}}=19200\, \textrm{Nm}^2/\textrm{C}$$
$$\phi_0 = 300\cdot 0\cdot 4\cdot 4=0\, \textrm{Nm}^2/\textrm{C}$$
Then,
$$\phi_T=\phi_F-\phi_0=19200\, \textrm{Nm}^2/\textrm{C}$$
c) ##x## axis: $$E_x=6x^2\, \widehat{i}\rightarrow \phi_x=\phi_F-\phi_0=60\cdot 16\cdot 4\cdot 4-0=15360\, \textrm{Nm}^2/\textrm{C}$$
##y## axis: $$E_y=1000y\rightarrow \phi_y=\phi_F-\phi_0=0-1000\cdot 4\cdot 4\cdot 4=-64000\, \textrm{Nm}^2/\textrm{C}$$
##z## axis: $$E_x=3000\rightarrow \phi_z=\phi_F-\phi_0\rightarrow \phi_F=\phi_0\rightarrow \phi_z=0\, \textrm{Nm}^2/\textrm{C}$$
How should I do that in part c)? I would do the module of this to calculate the flux but it doesn't give the answer.