- #1
-EquinoX-
- 564
- 1
Homework Statement
Question is:
Compute the flux of the vector field, \vec{F} , through the surface, S.
[tex]\vec{F} = 7\vec{r}[/tex] and S is the part of the surface [tex]z = x^2 + y^2[/tex] above the disk [tex]x^2 + y^2 \leq 4[/tex] oriented downward.
Homework Equations
The Attempt at a Solution
[tex]\int\limits_R (7x\vec{i} + 7y\vec{j} + (x^2 + y^2)\vec{k}) \cdot (2x\vec{i} + 2y\vec{j} - k) dA[/tex]
[tex]\int\limits_R (14x^2 + 14y^2 - (x^2 + y^2)) dA[/tex]
[tex]\int\limits_R (13x^2 + 13y^2) dA[/tex]
[tex]13 \int\limits_R (x^2 + y^2) dA[/tex]
[tex]13 \int^{2\pi}_0\int^4_0 r^3 dA[/tex]
[tex]13 \int^{2\pi}_0 64 dA[/tex]
is this correct?