- #1
Math100
- 802
- 221
- Homework Statement
- Prove the following statement:
For any integer ## a ##, the units digit of ## a^{2} ## is ## 0, 1, 4, 5, 6 ##, or ## 9 ##.
- Relevant Equations
- None.
Proof:
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, 6, 7, 8 ##, or ## 9\pmod {10} ##.
Note that ## a^{2}\equiv 0, 1, 4, 9, 6, 5, 6, 9, 4 ##, or ## 1\pmod {10} ##.
Thus ## a^{2}\equiv 0, 1, 4, 5, 6 ##, or ## 9\pmod {10} ##.
Therefore, the units digit of ## a^{2} ## is ## 0, 1, 4, 5, 6 ##, or ## 9 ## for any integer ## a ##.
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, 6, 7, 8 ##, or ## 9\pmod {10} ##.
Note that ## a^{2}\equiv 0, 1, 4, 9, 6, 5, 6, 9, 4 ##, or ## 1\pmod {10} ##.
Thus ## a^{2}\equiv 0, 1, 4, 5, 6 ##, or ## 9\pmod {10} ##.
Therefore, the units digit of ## a^{2} ## is ## 0, 1, 4, 5, 6 ##, or ## 9 ## for any integer ## a ##.