- #1
mathusers
- 47
- 0
consider: [tex]f:R \rightarrow R[/tex], [tex]f(x) = x^n[/tex] for some [tex] n \epsilon N [/tex]. I have the proof that [tex]f'(x) = nx^{n-1}[/tex].
PROOF:
-----------------------------------------
We choose an arbitary [tex]x [/tex] so,
[tex]f(x) = x^n[/tex]
[tex]f'(x) = \lim_{h \to 0} \frac {f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac {(x + h)^n - (x)^n}{h}[/tex]
Now using the fact that [tex]a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1})[/tex], we get
= [tex] \lim_{h \to 0} \frac {(x + h)^n - (x)^n}{h} = \lim_{h \to 0} [ (x+h)^{n-1} + (x+h)^{n-2}x + ... + (x+h)x^{n-2} + x^{n-1} ] = nx^{n-1}. [/tex].
However I need explaining on a few things here:
1) is this proof entirely correct
2) I don't fully understand the line about [tex]a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1})[/tex]. Where does this a and b come from and how do u explain the expansion of [tex]a^n - b^n[/tex].
3) Although we are using the definition of the derivative to prove that if f(x) = [tex] x^n[/tex] then [tex]f'(x) = nx^{n-1}[/tex], does this proof actually directly show that the function f is differentiable? or do u have to use another individual proof? e.g. using limits etc?
4) Do you have an easier proof that [tex]f'(x) = nx^{n-1}[/tex]?
Cheers :)
PROOF:
-----------------------------------------
We choose an arbitary [tex]x [/tex] so,
[tex]f(x) = x^n[/tex]
[tex]f'(x) = \lim_{h \to 0} \frac {f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac {(x + h)^n - (x)^n}{h}[/tex]
Now using the fact that [tex]a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1})[/tex], we get
= [tex] \lim_{h \to 0} \frac {(x + h)^n - (x)^n}{h} = \lim_{h \to 0} [ (x+h)^{n-1} + (x+h)^{n-2}x + ... + (x+h)x^{n-2} + x^{n-1} ] = nx^{n-1}. [/tex].
However I need explaining on a few things here:
1) is this proof entirely correct
2) I don't fully understand the line about [tex]a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + b^{n-1})[/tex]. Where does this a and b come from and how do u explain the expansion of [tex]a^n - b^n[/tex].
3) Although we are using the definition of the derivative to prove that if f(x) = [tex] x^n[/tex] then [tex]f'(x) = nx^{n-1}[/tex], does this proof actually directly show that the function f is differentiable? or do u have to use another individual proof? e.g. using limits etc?
4) Do you have an easier proof that [tex]f'(x) = nx^{n-1}[/tex]?
Cheers :)
Last edited: