- #1
Math100
- 802
- 222
- Homework Statement
- For ## n>1 ##, show that every prime divisor of ## n!+1 ## is an odd integer that is greater than ## n ##.
- Relevant Equations
- None.
Proof:
Suppose for the sake of contradiction that there exists a prime divisor of ## n!+1 ##,
which is an odd integer that is not greater than ## n ##.
Let ## n>1 ## be an integer.
Since ## n! ## is even,
it follows that ## n!+1 ## is odd.
Thus ## 2\nmid (n!+1) ##.
This means every prime factor of ## n!+1 ## is an odd integer.
Let ## p ## be a prime factor of ## n!+1 ## such that ## p\leq n ##.
Then we have ## p\mid n! ## and ## p\mid (n!+1) ##.
Thus ## p\mid 1 ##, which implies that ## p=\pm 1 ##.
This is a contradiction because ## p ## must be a prime number where ## p\neq \pm 1 ##, so ## p\nleq n ##.
Therefore, for ## n>1 ##, every prime divisor of ## n!+1 ## is an odd integer that is greater than ## n ##.
Suppose for the sake of contradiction that there exists a prime divisor of ## n!+1 ##,
which is an odd integer that is not greater than ## n ##.
Let ## n>1 ## be an integer.
Since ## n! ## is even,
it follows that ## n!+1 ## is odd.
Thus ## 2\nmid (n!+1) ##.
This means every prime factor of ## n!+1 ## is an odd integer.
Let ## p ## be a prime factor of ## n!+1 ## such that ## p\leq n ##.
Then we have ## p\mid n! ## and ## p\mid (n!+1) ##.
Thus ## p\mid 1 ##, which implies that ## p=\pm 1 ##.
This is a contradiction because ## p ## must be a prime number where ## p\neq \pm 1 ##, so ## p\nleq n ##.
Therefore, for ## n>1 ##, every prime divisor of ## n!+1 ## is an odd integer that is greater than ## n ##.