- #1
Math100
- 802
- 222
- Homework Statement
- For ## n>3 ##, show that the integers ## n, n+2, n+4 ## cannot all be prime.
- Relevant Equations
- None.
Proof:
Let ## n>3 ## be an integer.
Applying the Division Algorithm produces:
## n=3q+r ## for ## 0\leq r< 3 ##,
where there exist unique integers ## q ## and ## r ##.
Suppose ## n ## is prime.
Then ## n=3q+1 ## or ## n=3q+2 ##, because ## n\neq 3q ##.
Now we consider two cases.
Case #1: Suppose ## n=3q+1 ## for some ## q\in\mathbb{N} ##.
That is, ## n\equiv 1 \mod 3 ##.
Then ## n+2\equiv 0 \mod 3 ## and ## n+4\equiv 2 \mod 3 ##.
Thus, the integer ## n+2 ## cannot be prime.
Case #2: Suppose ## n=3q+2 ## for some ## q\in\mathbb{N} ##.
That is, ## n\equiv 2 \mod 3 ##.
Then ## n+2\equiv 1 \mod 3 ## and ## n+4\equiv 0 \mod 3 ##.
Thus, the integer ## n+4 ## cannot be prime.
Therefore, for ## n>3 ##, the integers ## n, n+2, n+4 ## cannot all be prime.
Let ## n>3 ## be an integer.
Applying the Division Algorithm produces:
## n=3q+r ## for ## 0\leq r< 3 ##,
where there exist unique integers ## q ## and ## r ##.
Suppose ## n ## is prime.
Then ## n=3q+1 ## or ## n=3q+2 ##, because ## n\neq 3q ##.
Now we consider two cases.
Case #1: Suppose ## n=3q+1 ## for some ## q\in\mathbb{N} ##.
That is, ## n\equiv 1 \mod 3 ##.
Then ## n+2\equiv 0 \mod 3 ## and ## n+4\equiv 2 \mod 3 ##.
Thus, the integer ## n+2 ## cannot be prime.
Case #2: Suppose ## n=3q+2 ## for some ## q\in\mathbb{N} ##.
That is, ## n\equiv 2 \mod 3 ##.
Then ## n+2\equiv 1 \mod 3 ## and ## n+4\equiv 0 \mod 3 ##.
Thus, the integer ## n+4 ## cannot be prime.
Therefore, for ## n>3 ##, the integers ## n, n+2, n+4 ## cannot all be prime.
Last edited: