- #1
Math100
- 797
- 221
- Homework Statement
- For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 13\mid 3^{n+2}+4^{2n+1} ##.
- Relevant Equations
- None.
Proof
Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 3^{n+2}+4^{2n+1}&\equiv 3^{n}\cdot 3^{2}+(4^{2})^{n}\cdot 4\pmod {13}\\
&\equiv (3^{n}\cdot 9+16^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 9+3^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 13)\pmod {13}\\
&\equiv 0\pmod {13}.
\end{align*}
Therefore, ## 13\mid 3^{n+2}+4^{2n+1} ## for ## n\geq 1 ##.
Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 3^{n+2}+4^{2n+1}&\equiv 3^{n}\cdot 3^{2}+(4^{2})^{n}\cdot 4\pmod {13}\\
&\equiv (3^{n}\cdot 9+16^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 9+3^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 13)\pmod {13}\\
&\equiv 0\pmod {13}.
\end{align*}
Therefore, ## 13\mid 3^{n+2}+4^{2n+1} ## for ## n\geq 1 ##.